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B : Linear k-arboricity of Complete Multipartite Graphs
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A decomposition of a graph is a list of subgraphs such that each edge appears in
exactly one subgraph in the list. There are many interesting results and problems in
this area. In this thesis, we study a special case of graph decomposition, called the
linear k-arboricity problem.

A linear k-forest is a graph whose components are paths with lengths at most £.
The minimum number of linear & -forests needed to decompose a graph G is the
linear k-arboricity of G, denoted [, (G) . The notion of linear k -arboricity is a
natural generalization of edge coloring and also a refinement of the concept of linear
arboricity in which the paths have no length constraints.

In 1982, Habib and Peroche made the following conjecture:
Conjecture. If G is a graph with maximum degree A(G) and k>2,then

AG)|V (G|

2{/(. V(G)[J

k+1

if A(G) =|V'(G)|-1and

1,(G)<4!

AG)V (G)|+1
2{1{- V(G)

if A(G) < |[V(G)|-1.

k+1

L J
So far, in the literature, quite a few results on the verification of this conjecture
have been obtained. For example, when G is a cubic graph, tree, complete graph, or

V(G
balanced complete bipartite graph, and & is small or k> P(—)l—‘ -1.

2
In this thesis, we determine the linear 3-arboricity of balanced complete bipartite
graphs, complete graphs, and parts of balanced complete multipartite graphs. We also
give some substantial results about the linear 2-arboricity of complete bipartite graphs,
complete graphs, and balanced complete multipartite graphs. The results obtained are

coherent with the corresponding cases of the conjecture mentioned above.
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Follows [5], G = (V, E) is a graph if V is finite set and E is a subset of {(u, v) | (4, v) is
an unorder pair of V'}. We say that V is the node set and E is the edge set. For a node u,
N(u) denote the neighborhood of  which is the set {v | (4, v) € E}. For any node of V,
denote the degree of u by degg (1) = | N(u) |. Two nodes u and v are adjacent if (u, v)
e E. A path is represented by (vi, va, ..., i) where v; # v; fori,je{1,2,...,k}
andi # jand (v, vi1) € E. Denote by O(i) the i-th node v; of path Q= v, vy, ...,
v ). We also write the path ( vi, va, ..., Vi) as ( vi, O1, Vi, Vitty «ovs Vjy O2, Viy ooy Vi),
where Q; is the path (vi, v, ..., v;) and Q5 is the path (v;, V11, ..., v;). We use d(u, v) to
denote the distance between u and v.

A path P is a Hamiltonian path if V(P) = V(G). we say two paths P, =( v, vy, ...,
viy and P, = ( uy, ua, ..., ug) are independent if P(i) = P»(i) for ie {1, k}, and P (i)
# Po(i) for 1 <7< k& We say a set of Hamiltonian paths { P, P2, -++, Py} of G are
mutually independent 1f any two different paths in the set are independent.

An interconnection network connects the processors of the parallel computer. Its
architecture can be represented as a graph in which the nodes correspond to
processors and the edges to connections. Hence we use graphs and networks
interchangeably. There are many conflicting requirements in designing the topology
for computer networks. The n-cube is one of the most popular topologies [6]. The star
network S, was proposed in [1] as “an attractive alternative to the n-cube” topology
for interconnecting processors in parallel computers.

[5], CK. Lin , HM. Huang, S. Bau, and L.H. Hsu prove that there exist (n — 2)
mutually independent hamiltonian paths in S, between any two distinct nodes from
different bipartite sets if n > 4. And they say the result is optimal. Since the topology of
Snkis like S,, we want to prove that there exist (» — 2) mutually independent

hamiltonian paths in S, s between any two distinct nodes ifn > k>1landn>5.

Key word: Hamiltonian Path, Independent, Independent Hamiltonian Paths,
Mutually Independent, Mutually Independent Hamiltonian Paths, Star
Graphs S, (n, k)-Star Graphs S, x, Hamiltonian cycle, Independent

Hamiltonian cycles, Mutually Independent Hamiltonian cycles



A g : On the Diameter of a Mixed Chordal Ring Network
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Recently, Chen, Hwang and Liu [3] proposed a new network called the mixed chordal
ring network which is very comparable to the double-loop network. They proved the
surprising result that the mixed chordal ring network can achieve diameter about
J2N which is a huge improvement over the double-loop network (here N is the
number of nodes in the network). They derived the upper and the lower bounds for the
diameter of a mixed chordal ring network. The purpose of this thesis is to propose an
O(logN)-time algorithm for deriving the exact value of the diameter of a mixed
chordal ring network.

Keywords: Chordal ring network, double-loop network, diameter, connectivity.
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B : The Study on Topologies of IEH Networks and Directed and
Undirected Double-Loop Networks
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Recently, various networks are proposed for transmitting mass information. Based on
the studies of network topologies, we can evaluate the performance of a network.
Concerning the properties of the number of nodes and edges, the diameter, optimal
routing, disjoint paths, fault-tolerant routing, etc., the topology of a network can
provide the complexity of hardware, transmission delay, optimal data communication,
fault-tolerant approach, and system performance. In this thesis, we will study the
topologies of the incrementally extensible hypercube (IEH) network and the directed
and undirected double-loop (DDL and UDL) networks.

The IEH network was proposed in 1992 to be a variety of the hypercube.
Without restriction of the number of nodes, the IEH network preserves many
advantages of the hypercube and has been widely studied. However, some properties
of the IEH network are incorrect and have been misused. In this thesis, we first
simplify the construction of an IEH network and correct the mistakes in previous
papers. Then we present an optimal routing and a fault-tolerant routing of the IEH
network.

The wide-diameter of a network provide a measure of fault-tolerance and suggest
optimal data communication. On the other hand, the isomorphism and embedding
between networks can provide the substitution of networks. In the second part of this
thesis, we study the topologies of the DDL and UDL networks. We present internally
node-disjoint paths in both networks and determine the wide-diameter. Moreover, we
find the isomorphisms and embeddings among DDL networks, UDL networks,
meshes, tori, and ILLIAC networks.

11
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g : The Study on the Dense Families and Wide-Diameters of the
Triple-Loop Network
& ¢RI
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With simple construction and node-symmetric properties, multiple-loop networks
have been widely studied and used in data communication. Relative to low reliability
and long transmission delay of single-loop (ring) networks and to high hardware
complexity of high-loop networks, in this thesis, we concentrate on the triple-loop
network.

In the triple-loop network TL(N;s,,s,,s;) , every node connects to the nodes
with differences s, , s, ,and s, . There are two important dual problems of dense
families. One is to find the maximum number of nodes for fixed diameters, which has
an important application to maximizing the support of services under fixed
transmission delay. The other one is to find the minimum diameter for a fixed number
of nodes by determining three parameters, which has an application to finding
minimum transmission delay. Note that the problem of dense families is difficult
because it is not monotonic. In the first part of this thesis, we survey the literatures
and present five dense families of triple-loop networks to improve the previous
results.

On the other hand, the wide-diameter of a network is an important measure of
fault-tolerance. In the second part of this thesis, we present disjoint paths between any
two nodes of the hyper-L triple-loop network and determine the wide-diameter of the
hyper-L triple-loop network to be D+1 , except two cases with D +2 . Moreover,
we apply the disjoint paths to optimal one-to-one data communication of the hyper-L
triple-loop network. According to the lengths of disjoint paths, we partition suitable
workloads to each path such that the total transmission delay is minimized.

12



#a 8 :OnNonblocking Three Stage Clos Networks under the
Multirate-Multicast Model
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The purpose of this thesis is to survey the scattered piece-meal results on the
multirate-multicast model for nonblocking three-stage Clos networks, to fill some
gaps and to extend some results. We also do some numerical com-parisons among
existing results. It is hoped that our survey will facilitate future researchers to identify
open problems and to make further inroads into this very important model with

applications to communication and computer networks.

13
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Network
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The 3-stage network was first proposed by Clos and is one of the most basic
multistage interconnecting network. Clos (1953) showed that the number of middle
crossbar required for strictly nonblocking is 2n—1, where » is the number of inlets
of an input crossbar. bene§(1965) constructed an example to show that using packing
routing strategy can make the number of middle crossbar required lower. This has
remained the only example of wide-sense non-blocking 3-stage Clos network which is
not strictly nonblocking.

In this thesis, we showed that the number of middle crossbar required for
wide-sense nonblocking under several routing strategies: save the unused, packing,
minimum index, cyclic static, and cyclic dynamic, which has been studied in the
literature is the same as required for strictly nonblocking and extended them to
asymmetric 3-stage Clos network. In particular, we prove the same conclusion for the

multi-logd N network and extend to a general class of network.

14



il B : The Rearrangeability of Banyan-type Networks
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In the thesis, we study the rearrangeability of the Banyan-type network with crosstalk
constraint. Let x, p and ¢ be nonnegative integers with 0<x, c¢<n and n,p>1.

B (x, p,c) is the Banyan-type network with, 2" inputs, 2" outputs, x extra-
(X5 Ds yan-typ p p

stages, and each connection containing at most ¢ crosstalk switch elements. We give

the necessary and sufficient conditions for rearrangeable Banyan-type networks .
B, (x, p,c). We show that

n+l
(a) B,(0,p,0) isrearrangeable nonblocking if and only if p> 2[71 .

n+l

(b) B,(0,p,c) isrearrangeable nonblocking if and only if p > 2{TJ for

1<c<n+l.

2

n—x+1
(¢) B,(x,p,n+x+1) isrearrangeable nonblocking if and only if p > 2L J .

2

n—x+l1
(d) B,(x,p,0) isrearrangeable nonblocking if and only if p > 2{ ] .
(e) B,(x,p,c) isrearrangeable nonblocking if and only if

p>12 2J if 1<x<n,
2 if x=n,

{n—x+1

for 1<c<n+x.

15



= g : Triangle-free disrtance-regular graphs
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Let I'=(X,R) denote a distance-regular graph with distance function 6 and
diameter d>3. For 2<i<d, by a parallelogram of length i, we mean a 4-tuple
xyzu of vertices in X such that 0(x,y)=0(y,z)=1, d(x,u)=i, and O(x,z)=
0(y,z)=0(y,u)=i—1. Suppose the intersection number @, =0, a,#0 in I'. We
prove the following (i)-(ii) are equivalent. (i) T' is Q-polynomial and contains no
parallelograms of length 3; (ii) I' has classical parameters. By applying the above
result we show that if I" has classical parameters and the intersection numbers
a,=0, a,#0, then for each pair of vertices v,we X at distance O(v,w)=2, there
exists a strongly regular subgraph Qof I' containing v,w. Furthermore, for each
vertex x €2, the subgraph induced on Q,(x) is an a,-regular connected graph

with diameter at most 3.

16



] g : The Convexity Spectra and the Strong Convexity Spectra of Graphs
W& BARA
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Given a connected oriented graph D, we say that a set S < V(D) is convex in D
if, for every pair of vertices x,y €S, the vertex set of every x—y geodesic (x—y
shortest dipath) and y—x geodesicin D is contained in S . The convexity number
con(D) of a nontrivial connected oriented graph D is the maximum cardinality of a
proper convex set of D.Let S.(K,) = {con(D)| D is an orientation of Kn} and
Sec(K,) ={con(D)| D is a strong orientation of Kn}. We show that S,.(K,) =
{1,2} and S.(K,) =1{1,3,4,..,n—1}if n>4. We also have that S..(K,)= {1}
and S,.(K,) ={1,3,4,..,n—-2}if n>4. We also show that every triple n,m,k

. n ;
of integers with n>5, 3<k<n-2, and n+1£ms(2), there exists a strong

connected oriented graph D of order n with |E(D)|=m and con(D)=k.

17



A g : The Enhanced Pyramid Network: An Attractive Alternative to the
Pyramid Network
¥ & RIEH
1 BT AR
 BRAACEHRERANTEEAR

The pyramid network (PM, for short) has long been proposed for parallel computing,
( computer vision, and image processing. The PM is a hierarchy structure base on
meshes. In 2004, we proposed a new hierarchy structure, called the enhanced pyramid
network (EPM, for short), by replacing each mesh (at layer greater than one) in PM
with a torus. Clearly, the EPM is a supergraph of the PM with the same node set.

In this thesis, we first investigate some topological properties of the EPAM.
Secondly, we derive a simple algorithm to construct a path between any two distinct
nodes in the EPM, and prove that it is a shortest-path routing algorithm. We also
proposed an optimal broadcasting algorithm on the EPM with respect to message
complexity and transmission delay. And then we calculate the average distance of the
EPM. Finally, we show that the EPM is 2-Hamiltonicity. This result is optimal
; because both the node connectivity and edge connectivity of the EPM are four and at

w most two faults are tolernable. These results show that the EPM has better topological

properties than the PM such as larger node and edge connectivities, smaller average
distance, and better fault-tolerant capability. Thus, the EPM is an attractive alternative

to the pyramid network.

Keywords: Enhanced pyramid networks, pyramid networks, fault-tolerant
embedding, routing algorithms, broadcasting algorithms, interconnection

networks
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F8 g : On Degenerate Double-Loop L-Shapes
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Most of the results about the L-shapes of double-loop networks are given in terms of
the four parameters /,h, p,n. But these parameters are not well defined in the

degenerate case. Recently, Cheng and Hwang gave an efficient algorithm to compute
the four parameters /,4, p,n of an L-shape which works for both the regular and the

degenerate cases. On the other hand, Chen and Hwang gave a set of rules to determine
the four parameters of a degenerate L-shape. Unfortunately, the solutions given by the
above two methods do not always coincide. In this thesis, we try to understand their

respective meanings and their relations.

Keywords: Double-loop network, L-shape, degenerate.
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With the development of network, the secret sharing schemes are more important.
How do we make the efficiency to be optimal and how to reduce the computing time.
Secret sharing scheme is very useful in the application of networks and our life. Up to
now, the related papers are still published frequently.

In this thesis, we modified three schemes from previous papers. First, Wu et al.’s
proposed a geometric approach for sharing secrets. We proposed a new scheme by
using hyperelliptic equation. It is more selection to hide the secrets and the
information rate is better. Second, Feldman proposed a verifiable secret sharing
scheme. All participant gets their shares can verify their shares true or not. The
computing time of our schemes are more efficient than Feldman’s scheme. Finally,
Yang et al.’s proposed a (¢, n) multi-secret sharing based on Shamir’s secret sharing.
The dealer need not redistribute fresh secret shares to every participant for next secret
sharing session. We proposed two new schemes such that the storages are smaller and
the computing time are fast than Chien et al.’s scheme..

Keyword: secret sharing scheme, online secret sharing scheme, information rate,
geometric approach.
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& g : Efficient Tag-Based Routing Algorithms for the Backward Network
‘ of a Bidirectional General Shuffle-Exchange Network
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In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN) and an
efficient tag-based routing algorithm for it. In [1], Chen, Liu and Qiu further enhanced
the GSEN with bidirectional links. The bidirectional GSEN can be divided into two

dependent networks, the forward network and the backward network. Since the

forward network is a GSEN, Padmanbhan's tag-based routing algorithm can be
applied on it. As for the backward network, Chen et al. [1] proposed a routing
algorithm which is based on the idea of inversely using the forward control tag. In this
thesis, we will show that the backward network has a wonderful property: for each
destination i, there are two backward control tags associated with it such that every
source j can get to i by using one of the two control tags. We will use this property to
derive efficient algorithms for one-to-one routing and for constructing a routing table.

Keywords: Interconnection network, multistage network, shuffle-exchange net-

work, Omega network, tag-based routing algorithm.
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g : Wide Diameters and Rabin Numbers of Generalized Folded
Hypercube Networks
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Reliability, efficiency, security, and broadcasting are important criteria in the
design of interconnection networks. Recently, the w-wide diameter dw(G), the

(w = 1)-fault diameter Dw(G), and the w-Rabin number 7w(G) have been used
to determine reliability and efficiency of interconnection networks. In this thesis,

we study d(G),dk(G),Dk(G), m(G), and 7, (G) of generalized folded hypercube

networks having connectivity k.
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gz B8 : The number of 4-cycles in 2-factorizations of K, ,
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A 2-factor of the complete bipartite graph K, , is a 2-regular spanning subgraph
of K. A 2-factorization of K, is a partition of the edge set of K, , into 2-factors. Let

Q(n) be the set of all x such that there exists a 2-factorization of K,, containing exactly
x 4-cycles. And we define

_J{0,1,2,+-,2 -2, ifniseven
1 {0,1,2,--, 0 s odd |

In this talk, we will discuss the identity Q(n) = FC(n).

23



= g : The Study of decompositions of K2, into 4-cycles, 6-cycles,

8-cycles, or 10-cycles
W& HER
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A graph is called a bipartite graph if the vertex set of the graph can be partitioned into
two disjoint nonempty sets, and any two vertices in the same set are not adjacency.
Moreover, if any two vertices in the different set are adjacency, then this bipartite

graph is called a complete bipartite graph, and denoted by X, ,.

A complete bipartite graph K, , can be decomposed into some subgraphs if K,.,

can be partitioned into edge-disjoint subgraphs, such that the union of vertex sets of

these subgraphs is the vertex set of K|, ,, and the union of edge sets is the edge set of

m,n

m,n *

In this thesis, we show that when 3<m<11,3<n<9, if 4p+6qg+8r+10s=4mn,
for all non-negative integers p, g, r, s, then K, , can be decomposed into p

4-cycle, g 6-cycle, r 8-cycle, and s 10-cycle.By using above results, we obtain

the following result. For all m,n>3 and non-negative integers p, g, r, s, if
4p+6q+8r+10s=4mn , then K,,,, can be decomposed into p 4-cycle, ¢

6-cycle, r 8-cycle,and s 10-cycle.
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A g : The number of repeated blocks in indecomposable twofold extended triple
systems
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A twofold extended triple system of order v with two idempotent element

(TETS(v,2)) is a pair (V,B) where V is a v-set and B is a collection of unordered triple,
called block, of type {x,y,z}, {Xx,x,y} or {X,x,x} such that each pair (not necessarily
distinct) belongs to exactly triple and there is only two triple of the type’ {x,x,x}. It is
trivial to see that a TETS(v,2) exists if and only if v= 1,2 (mod 3).
If a TETS(v,2) contains two b; and b, that are identical as subsets of V, then it is said
to be a repeated block. We are interested in the question. Given v = 1,2 (mod 3) and a
nonnegative integer k, does there exist an indecomposable TEST(v,2) (that is, cannot
have its blocks partitioned into two ETS(v,1)) with exactly k repeated blocks? In this
talk, we will give the complete solution for this problem.
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5 g : Perfectness of the complements of circular complete graphs
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For p>2q,let K, be the graph with vertices 0, 1,2, ..., p — 1 in which i~ j if
g <|i —jl £p — q. The circular chromatic number y,(G) of a graph G is the

minimum of those p/g for which G admits a homomorphism to K, . The circular

clique number @,(G) of G is the maximum of those p/g for which K, admits a

homomorphism to G. A graph G is circular perfect if for every induced subgraph A of
G we have y,.(H)=w,(H). In this paper, we characterize those rational numbers p/g

for which K, are circular perfect. We also prove that if G(n, S) is a circulant graph

whose generating set S has cardinality at most 3, then G(n, S) is circular perfect.
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g B : Graph marking game and colouring game
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This thesis discusses graph marking game and graph colouring game.
Suppose G=(V,E) isa graph. A marking game on G is played by two
players, Alice and Bob, with Alice playing first. At the start of the game all vertices

are unmarked. A play by either player consists of marking an unmarked vertex. The
game ends when all vertices are marked. For each vertex v of G, write #(v)=; if

v is marked at the jthstep. Let s(v) denote the number of neighbours u of v

for which #(u) <t(v),i.e., u is marked before v. The score of the game is

s =1+ maxs(v).
veV

Alice's goal is to minimize the score, while Bob's goal is to maximize it. The

game colouring number col,(G) of G is the least s such that Alice has a strategy

that results in a score at most s .

Suppose r=>1 , d=0 areintegers. Inan (r,d)—relaxed colouring game of
G, two players, Alice and Bob, take turns colouring the vertices of | with colours
fromaset X of rcolours, with Alice having the rst move. A colour i is legal for
an uncoloured vertex x (at a certain step) if after colouring x with colour i, the
subgraph induced by vertices of colour i has maximum degree at most d . Each
player can only colour an uncoloured vertex with a legal colour. Alice's goal is to
have all the vertices coloured, and Bob's goal is the opposite: to have an uncoloured
vertex without legal colour. The d -relaxed game chromatic number of a graph G,

denoted by ;(;d)(G) is the least number » so that when playing the (r,d)-relaxed

colouring game on G, Alice has a winning strategy. If d =0, then the parameter is

called the game chromatic number of G and is also denoted by X, (G).

This thesis obtains upper and lower bounds for the game colouring number and

relaxed game chromatic number of various classes of graphs. Let col (77,) and

col, (7) denote the maximum game colouring number of partial & trees and the

maximum game colouring number of planar graphs, respectively. In this thesis, we

Prove that col (77,)=3k+2 and col .(P)>11. We also prove that the game
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colouring number col,(G) of a graph is a monotone parameter, i.e., if Hisa
subgraph of G, then col, (/) < col,(G). For relaxed game chromatic number of
gra phs, this thesis proves that if G is an outerplanar graph, then #'(G)<7~¢ for

t=23,4, for d>¢,and y(G)<2 for d>6.In particular, the maximum

4 -relaxed game chromatic number of outerplanar graphs is equal to 3. If G is a tree

then z;d)(G) <2 for d=2.
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3 : Distance Two Labelings on Graphs
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L(2,1)—labelingof a graph G is a function f:¥(G)— NU{0} such that for
u,velV(G),wehave | f(u)-f(V)[22 if du,v)=1,and | f(u)- f(v)[21 if
v)=2.The L(2,1)—labeling number A(G) of G is the smallest number k
that G hasan L(2,1)—labeling with max{f(v):veV(G)}=k

~In this thesis, we review some proofs for the upper bounds of A(G), and give an
native proof for A(G)<A*+A-2.
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@ 8 :L(21)-labeling and list-L(2,1)-labeling number of corona of two
graphs
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Givena graph G with n vertices and a function L:V(G)—>2", we say that L is
(2,1)-choosable for G if there exists a function c¢:3J = {L(v,.)|1 <i< n} =>4, (L)) =aq,
for all i, 1<i<n,which satisfies the conditions

(1) a,el(,),

“'-‘,._.ajlzz if dg(v,v,)=1,

—a)|>1 if dg(v,v,)=2.

In this case, the function ¢ is said to be a (2,1)-choosable function of G with

pect to L. If for all the function L with |L(v,.)|2k for all v, eV(G), there is a

osable function of G with respect to L , then we say that G has a
2,1)-labeling. The list-L(2,1)-labeling number of G, denoted by 4,(G), is defined

) -min{k|G has ak—list-L(Z,l)—labeling}. The purpose of this thesis is to study

ling and list-L(2,1)-labeling number of graphs.

 L(2,1)-labeling, list-L(2,1)-labeling, corona, complete graphs, path cycle.
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il B : A Short Note On Minimum Size Of Graphs With Given Bandwidth
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Graph bandwidth problem is a well known NP-Complete problem.
The relation between size of a graph and bandwidth is very interesting.
This paper provides the minimum size of a graph of order » (n is odd

and n29) without isolated vertex and bandwidth B(G)=2! and
shows that K, ,, | isan extremal graph of m(n,2%).
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A B : On Steiner centers of graphs
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Oellermann and Tian presented an algorithm for finding the n-center of a
tree in 1990 [3], but the correction of the algorithm seems not sound. In this paper we
give a clear proof of the validity of their algorithm.

They also showed a containment relationship for a tree 7, Cn(T) u Cnri(T)
for n, 2. We present some graphs G for which Cn(G) 6u Cn+1(G). Oellermann asked
the following question: Can the n-center and (n ; 1)-center be disjoint? Though the
problem is not solved yet, we present an in_nite family of graphs G such that C2(G)

and C«(G) are disjoint. Finally, we give an algorithm for " nding the n-center of a
block graph.
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8 : On-line node ranking algorithm of graphs
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Given a graph, finding an optimal node ranking is an interesting computational
problem. A node ranking of a graph G=(V,E) is a proper node coloring
C:¥V —> N such that any path in G with end nodes x,y fulfilling C(x)=C(y)
contains an internal node z with C(z)>C(x). In the on-line version of the node
ranking problem, the nodes v,,v,,...,v, are coming one by one in an arbitrary order;
and only the edges of the induced subgraph G[v,,v,,...,v;] are known when the
color for the node v, be chosen. The assigned color cannot be changed later.

In this thesis, we are interesting in on-line node ranking problem. We design one
on-line algorithm to find an on-line node ranking for general paths, and its time
complexity is O(nlogn). Furthermore, we prove the on-line node ranking algorithm
for paths also can be used to find an on-line node ranking for cycles. And we design

another on-line algorithm to find an on-line node ranking for general trees with

O(n’)time. We also design an optimal on-line algorithm for special trees, k,,, also

called stars. Secondly, we modify our on-line node ranking algorithms to parallel al-
gorithms. Our parallel algorithm needs O(nloglogn) time using O(logn/loglogn)
processors to find an on-line node ranking for paths and cycles, and its cost is
O(nlogn) . And for trees, our algorithm needs O(nlog’n) time with using
O(n’ /1log® n) processors, and its cost is O(n*) k

Keywords: node ranking, on-line, algorithm, path, cycle, tree, star, parallel algorithm.
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8 : The Bounded-shape Sum-partition and the Single-shape
Mean-partition Problems
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The optimal partition problem considers the partition of » objects into p
nonempty parts, and finding a partition(optimal partition) to maximize the objective
function F:R” — R. A brute force method is to compare the values of objective
function F(x) for each partition 7z . Thus, we are concerned with the number of all
partitions which determines whether the brute force method is practical. However, a
more desirable solution is to prove that the objective function has some suitable
property which leads to the existence of an optimal partition in a special class of
partitions. Then, we need pay attention only to this class of partitions.

The vector of the size of each part is called a shape. If a partition problem has a
restriction where the size of each part lies in an interval, then it is called a
bounded-shape partition problem. If each interval is degenerated, then it is called
single-shape partition problem. In Chapter 2, we use the generating function to count
the number of ordered(unordered) shapes and the number of bounded-shape partitions.
In Chapter 3, we prove that for bounded-shape sum-partition problem with Schur-
convex objective function, there must be a nonmajorized shape such that the cor-
responding size-consecutive partition is optimal. We also bound the number of non-
majorized shapes, and develop an algorithm to find all nonmajorized shape-types. In
Chapter 4, we prove that for single-shape mean-partition problem with quasi-convex
objective function, there must be a consecutive optimal partition. We also give some

new results for the mean-partition problems.
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