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大會宗旨(Purpose) 

            It is now a tradition of the combinatorics community in Taiwan to hold a 
Symposium for Young Combinatorialists in the summer, to provide a platform for 
the Ph.D. graduates and M.S. graduates of that year to report their research results, 
to communicate and discuss with each other. Also some senior professors are 
invited to give lectures at the symposium. It is an opportunity for discussion of 
mathematics, and also an opportunity to meet friends and make the society more 
like a big family. This event has been a tradition for more than twenty years now 
and has become an important event in the community. The symposium for the 
year 2012 will be held in National Sun Yat-sen University from August 10 to 12.  
        This year is special, as one of the founders of the combinatorics 
community in Taiwan, Professor Gerard J. Chang, turns 60. Gerard has made 
tremendous contribution to the development of combinatorics in Taiwan, through 
teaching and supervising students, doing administration work at university 
departments and at National Science Council (NSC), and pursuing research. To 
celebrate Gerard’s 60th birthday, we expand the scale of this annual symposium, 
by extending it to a 3 day workshop and inviting some scholars from abroad to 
this workshop.  
        As before, this symposium will issue Excellent Thesis awards at the end of 
the symposium to selected theses. The selection will be done in June and July, by 
a committee. Students graduating this year are encouraged to submit thesis to the 
organizing committee of the symposium.  
 
        組合數學新苗研討會旨在提供台灣剛取得碩博學位的同仁，發表其論

文成果，互相切磋，並接受大家建議的機會，同時亦邀請幾位較資深的老師

給予大會演講，增益研究上的學習與方向。 

        組合數學新苗研討會已連續舉辦有 20 餘年，且今年適逢張鎮華教授

60 歲，為感謝張老師對組合數學界的貢獻，我們擴大舉辦此次研討會。第一

天為圖論及組合學研討會，以慶祝張老師六十歲生日為主，邀請國內外數位

學者演講，共襄盛舉。第二日及第三日為組合數學新苗研討會，會中邀請幾

位國內學者給予演講，剛取得碩、博士學位的新苗可於此時發表論文。此研

討會對於鼓勵年青後起之輩與國內專家學者研究交流有很大的助益。 

        今年再度由中山大學應用數學系主辦。承續歷年的作法，今年亦將

有最佳論文選拔，將組成公正的審查小組，在六、七月間審論文。獲選的同

學，我們將在會議結束前頒發獎狀及獎牌。  
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2012 圖論及組合學研討會暨組合數學新苗研討會議程

(Conference Program) 

地點(Place): 國立中山大學理學院國際會議廳 

(Conference Center, College of Science) 

08 月 10 日 星期五 (August 10, Friday) 
09:30~10:00 報到(Registration) 
10:00~10:10 開幕(Welcoming Remarks) 主持人(Chairman): Xuding Zhu 
 
Session 1. 主持人(Chairman): Xuding Zhu 
10:10~11:00 邀請演講(Invited Speaker): Jerrold R. Griggs (University of South Carolina, USA) 
(Page 01)   題目(Title): Families of subsets with a forbidden subposet 
Session 2. 主持人(Chairman): Jerrold R. Griggs 
11:05~11:55 邀請演講(Invited Speaker): Rangaswami Balakrishnan (Bharathidasan University, India) 
(Page 02)   題目(Title): Cartesian product of oriented graphs with oriented hypercubes 
12:00~13:30 午餐(Lunch) 
 
Session 3. 主持人(Chairman): Li- Da Tong 
13:30~14:20 邀請演講(Invited Speaker): Stephane Bessy (Universite Montpellier 2, France) 
(Page 06)   題目(Title): Enumerating the edge-colourings and total colourings of a regular graph 
Session 4. 主持人(Chairman): Stephane Bessy 
14:25~15:15 邀請演講(Invited Speaker):劉德芬 (Daphne Liu, Callifornia State University, Los 

Angeles, USA) 
(Page 07)   題目(Title): From topological methods to combinatorial proofs for Kneser graphs 
15:15~15:45 休息(Tea Break) 
 
Session 5. 主持人(Chairman): Daphne Liu 
15:45~16:35 邀請演講(Invited Speaker):葉鴻國 (Hong-Gwa Yeh, National Central University) 
(Page 09)   題目(Title): Diffusion on networks 
Session 6. 主持人(Chairman): Hong-Gwa Yeh 
16:40~17:30 邀請演講(Invited Speaker):朱緒鼎(Xuding Zhu, Zhejiang Normal University and 

National Sun Yat-sen University) 
(Page 10)   題目(Title): On-line list colouring of graphs 
18:30~     晚宴(Banquet) 地點(Place):統一健康世界(Uni-Resort) 
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08 月 11 日 星期六(August 11, Saturday) 
Session 7. 邀請演講(Invited Talk) 主持人(Chairman): Chiuyuan Chen 
09:00~09:50 邀請演講(Invited Speaker):游森棚 (Sen-Peng Eu, National University of Kaohsiung) 
(Page 11)   題目(Title): Permutation patterns and ARM identities 
09:50~10:15 休息(Tea Break) 

 
Session 8. 主持人(Chairman): Sen-Peng Eu 
10:15~10:40 演講者(Speaker):江俊瑩 (Chun-Ying Chiang, National Central University) 
(Page 13)   題目(Title): On the target set selection problem 
10:45~11:10 演講者(Speaker):蔡維迦 (Wei-Chia Tsai (National University of Kaohsiung) 
(Page 14)   題目(Title): Border strip decompositions on two-dimensional surfaces 
11:15~11:40 演講者(Speaker):何澤初 (Tze-Chu Ho, National University of Kaohsiung) 
(Page 15)   題目(Title): Bell permutation tableaux 
11:50~13:00 午餐(Lunch) 

 
Session 9. 主持人(Chairman): Sheng-Chyang Liaw 
13:00~13:25 演講者(Speaker): Yangjing Long (Max Planck Institute for Mathematics in the Sciences) 
(Page 16)   題目(Title): Relations between graphs  
13:30~13:55 演講者(Speaker):劉純蓉 (Chun-Rong Liu, National Chiayi University) 
(Page 17)   題目(Title): On the r-equitable coloring of complete bipartite graphs 
14:00~14:25 演講者(Speaker):廖紹棠 (Shao-Tang Liao, National Taiwan University ) 
(Page 18)   題目(Title): The strong chromatic index of cacti 
14:30~14:55 演講者(Speaker):徐祥峻 (Hsiang-Chun Hsu, National Taiwan University) 
(Page 19)   題目(Title): Four partition problems of graphs 
15:00~15:30 休息(Tea Break) 
 
Session 10. 主持人(Chairman): Justie Su-Tzu Juan 
15:30~15:55 演講者(Speaker):黃皜文 (Hau-Wen Huang, National Center for Theoretical Sciences) 
(Page 20)   題目(Title): Lit-only sigma-game on nondegenerate graphs 
16:00~16:25 演講者(Speaker):袁智龍 (Chih-Lung Yuan, National Chiao Tung University) 
(Page 21)   題目(Title): On the study of position-based routing algorithms for wireless ad hoc 

networks 
16:30~16:55 演講者(Speaker):李文惠 (Wen-Hui Lee, National Chi Nan University) 
(Page 22)   題目(Title): Computing wide diameters of alternating group graphs 
17:00~17:25 演講者(Speaker):張若怡(Joy Jo-Yi Chang, National Chi Nan University) 
(Page 23)   題目(Title): Visual multi-secret image sharing scheme by shifting random grids 
18:00~     晚餐(Dinner) 
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08 月 12 日 星期日(August 12, Sunday) 
Session 11. 邀請演講(Invited Talk) 主持人(Chairman): Hong-Guo Yeh 
09:00~09:50 邀請演講(Invited Speaker):郭大衛 David Kuo (National Dong Hwa University) 
(Page 12)   題目(Title): The game L(d,1)-labeling problem of graphs 
09:50~10:15 休息(Tea Break) 

 
Session 12. 主持人(Chairman): David Kuo 
10:15~10:40 演講者(Speaker):梁育榮 (Yu-Jung Liang, National Dong Hwa University) 
(Page 24)   題目(Title): Rainbow connection numbers of Cartesian product of graphs 
11:40~11:10 演講者(Speaker):杜國豪 (Kuo-Hao Tu, National Dong Hwa University) 
(Page 25)   題目(Title): Outer-connected domination numbers of block graphs 
11:15~11:40 演講者(Speaker):胡世偉 (Shih-Wei Hu, Tunghai University) 
(Page 26)   題目(Title): On zero-sum flows and flow numbers of undirected graphs 
11:50~13:00 午餐(Lunch) 
 
Section 13. 主持人(Chairman): Hsin-Hao Lai 
13:00~13:25 演講者(Speaker):李渭天(Wei-Tian Li, Academia Sinica) 
(Page 28)   題目(Title): The forbidden subposet problems and Turán problems 
13:30~13:55 演講者(Speaker):高瑋琳 (Wei-Lin Kao, National Chiao Tung University) 
(Page 29)   題目(Title): Facebook -- a smaller world 
14:00~14:25 演講者(Speaker):李姿慧 (Zi-Hui Lee, National Chiao Tung University) 
(Page 30)   題目(Title): A mathematical model for finding the culprit who spreads rumors 
14:30~14:55 演講者(Speaker):劉晉宇 (National Sun Yat-sen University) 
(Page 31)   題目(Title): The game Grundy arboricity of graphs 
15:00~15:10 休息(Tea Break) 
 
Session 14. 主持人(Chairman): Xuding Zhu 
15:10~     頒發優良論文獎 
賦歸(End) 

 

 



Families of Subsets with a Forbidden Subposet

Jerrold R. Griggs∗

Abstract

Given a finite poset P , we consider the largest size La(n, P ) of a family of subsets
of [n] := {1, . . . , n} that contains no (weak) subposet P . Letting Pk denote the k-
element chain (path poset), Sperner’s Theorem (1928) gives that the largest size of
an antichain of subsets of [n], La(n, P2) =

(
n

bn/2c
)
, and Erdős (1945) showed more

generally that La(n, Pk) is the sum of the k middle binomial coefficients in n.
In recent years Katona and his collaborators investigated La(n, P ) for other

posets P . It can be very challenging, even for small posets. Based on results we
have, Griggs and Linyuan Lu conjecture that π(P ) := limn→∞ La(n, P )/

(
n

bn/2c
)

exists for general posets P , and, moreover, it is an integer obtained in a specific
way.

For k ≥ 2 let Dk denote the k-diamond poset {A < B1, . . . , Bk < C}. Using
probabilistic reasoning to bound the average number of times a random full chain
meets a P -free family F , called the Lubell function of F , Griggs, Wei-Tian Li, and
Lu prove that π(D2) < 2.273, if it exists. This is a stubborn open problem, since
we expect π(D2) = 2. It is then surprising that, with appropriate partitions of the
set of full chains, we can explicitly determine π(Dk) for infinitely many values of k,
and, moreover, describe the extremal Dk-free families. For these fortunate values
of k, and for a growing collection of other posets P , we have that La(n, P ) is a sum
of middle binomial coefficients in n, while for other values of k and for most P , it
seems that La(n, P ) is far more complicated.

Some techniques being used are adapted from Turán theory of graphs and hy-
pergraphs, including probabilistic arguments and, more recently, flag algebras.

∗Department of Mathematics, University of South Carolina, Columbia, SC 29208 USA
(griggs@math.sc.edu).
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Cartesian Product of Oriented Graphs with Oriented Hypercubes

R. Balakrishnan1 and A. Anuradha2

Department of Mathematics, Bharathidasan University, Tiruchirappalli-620024, India.
1mathbala@sify.com, 2radha.anu.am@gmail.com.

Introduction

Let G = (V, E) be a finite simple undirected graph of order n with V = {v1, v2, . . . , vn} as its vertex

set and E as its edge set. Let σ be any orientation of the edge set E yielding the oriented graph

Gσ = (V, Γ), where Γ is the arc set of Gσ. The adjacency matrix of G is the n×n matrix A = (aij),

where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. As the matrix A is real and symmetric, all

its eigenvalues are real. The skew adjacency matrix of the oriented graph Gσ is the n × n matrix

S(Gσ) = (sij), where sij = 1 = −sji whenever (vi, vj) ∈ Γ(Gσ) and sij = 0 otherwise. Clearly

S(Gσ) is a skew symmetric matrix and hence its eigenvalues are all pure imaginary. The spectrum

of G, denoted by Sp(G), is the set of all eigenvalues of A. In a similar manner, the skew spectrum

of the oriented graph Gσ is defined as the spectrum of the matrix S(Gσ).

Cartesian product of oriented graphs with oriented hypercubes

Suppose Hσ is an oriented graph of order n with H as its underlying graph. For d ≥ 1, let

Gd = H¤Qd ' Qd¤H, where Qd = K2¤K2¤ . . . ¤K2 (d times), be the Cartesian product of the

undirected graph H with the hypercube Qd of dimension d. We construct an oriented Cartesian

product graph Gψ
d by orienting the edges of Gd in a specific way. The skew adjacency matrices

S(Gψ
d ) obtained in this way for some special families of G answer some special cases of the Inverse

Eigenvalue Problem. The Cartesian product graph Gd = Qd¤H = K2¤(Qd−1¤H) = K2¤Gd−1

contains two copies of Gd−1. Set Gψ
0 ' Hσ. Figure 1 gives the way of orienting the graph Gψ

k+1 from

two copies of Gψ
k , for k = 1, 2, . . .

G
ψ
kG

ψ
k

G
ψ
k+1

Figure 1: Construction of Gψ
k+1 from two copies of Gψ

k
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For d ≥ 1, let Sd be the skew adjacency matrix of the Cartesian product graph Gψ
d oriented as

defined above. Then the skew adjacency matrix Sd+1 for the oriented graph Gψ
d+1 is given by

Sd+1 =
[

Sd I
−I Sd

]
,

where I is the identity matrix of order 2d.

Theorem 1. For d ≥ 1, the skew spectrum of the oriented graph Gψ
d+1 is

SpS(Gψ
d+1) = {i(µ± 1) : iµ ∈ SpS(Gψ

d )}.

Lemma 2 ([2]). Let Sp(G1) = {λ1, . . . , λn} and Sp(G2) = {µ1, . . . , µt} be respectively the adjacency

spectra of two graphs G1 of order n and G2 of order t. Then

Sp(G1¤G2) = {λi + µj : 1 ≤ i ≤ n, 1 ≤ j ≤ t}.

Corollary 3. Suppose σ is an orientation of a bipartite graph H for which SpS(Hσ) = iSp(H).

Then for each d ≥ 1, the oriented Cartesian product graph Gψ
d = (H¤Qd)

ψ has the property that

SpS(Gψ
d ) = iSp(Gd).

It is easy to verify that when Hσ ' Kσ
2 , the oriented graph Gψ

d = (H¤Qd)
ψ ' Qψ

d+1 is one of

the oriented hypercubes constructed by G-X. Tian (see Algorithm 2 in [7]) for which SpS(Gψ
d ) =

iSp(Gd).

Theorem 4. Let SpS(Hσ) =
(

iµ1 iµ2 . . . iµp
m1 m2 . . . mp

)
, where mj, 1 ≤ j ≤ p, is the multiplicity of

iµj. Then the skew spectrum of the oriented graph Gψ
d = (H¤Qd)

ψ is given by

SpS(Gψ
d ) =

(
i(µj + d) i(µj + d− 2) . . . i(µj + d− 2d)(

d
0

)
mj

(
d
1

)
mj . . .

(
d
d

)
mj

)
, j = 1, 2, . . . , p.

Definition 5. Suppose Gσ is an oriented graph with skew spectrum SpS(Gσ) =
(

iµ1 iµ2 . . . iµp
m1 m2 . . . mp

)
.

Then Gσ is said to be skew integral if each µj, 1 ≤ j ≤ p, is an integer.

The following corollary constructs many skew integral oriented graphs from a given skew integral

oriented graph.

Corollary 6. Let Hσ be a skew integral oriented graph. Then for each d = 1, 2, . . . , the oriented

Cartesian product graph Gψ
d = (H¤Qd)

ψ is also skew integral.

3



Structured Inverse Eigenvalue Problem (SIEP)

Given a certain spectral data, the objective of a Structured Inverse Eigenvalue Problem (SIEP) is to

construct a matrix that maintains a certain specific structure as well as the given spectral property

[5]. Structured Inverse Eigenvalue Problems arise in a wide variety of fields: control design, system

identification, principal component analysis, exploration and remote sensing, geophysics, molecular

spectroscopy, particle physics, structure analysis, circuit theory, mechanical system simulation and

so on [5]. For further study on inverse eigenvalue problems, the reader may refer to the survey

papers [3, 5]. The SIEP is defined as follows:

Structured Inverse Eigenvalue Problem (SIEP): Given scalars λ1, λ2, . . . , λn in a field F, find a

specially structured matrix A such that {λ1, λ2, . . . , λn} forms the set of eigenvalues of A.

We now construct skew symmetric matrices that solve the SIEP for some interesting special sets

of complex numbers.

b

bb

b b

b

1

2

34

5 6

Figure 2: Oriented graph Hσ

Theorem 7. Let Hσ be the oriented graph given in Figure 2. Let G = {Gψ
d : d = 1, 2, . . .} be

the family of oriented graphs obtained by orienting Gd = H¤Qd as shown in Figure 1. Then the

oriented graph Gψ
d = (H¤Qd)

ψ, d = 0, 1, 2, . . . , of order nd = 6.2d is skew integral.

Theorem 8. Given a positive integer k ≥ 3, there exists a skew symmetric matrix A such that the

set {0,±i,±2i, . . . ,±ki} forms the set of all distinct eigenvalues of A.

By a cycle in an oriented graph Gσ we mean a cycle, not necessarily directed. An even cycle C

of Gσ is said to be evenly oriented (respectively oddly oriented) if the number of arcs of C in each

direction is even (respectively odd) [6]. From [1], we know that the skew adjacency matrices of both

the evenly oriented cycles Cσ
4 have the same skew spectrum, namely,

SpS(Cσ
4 ) =

(
2i 0 −2i

1 2 1

)
.

4



Applying our orientation technique (as shown in Figure 1) to an evenly oriented cycle Cσ
4 , we

can construct oriented graphs Gψ
d = (C4¤Qd)

ψ, d = 1, 2, . . . , with the following special property:

Theorem 9. For any d ∈ N, there exists a skew symmetric matrix A for which the set {±di,±(d−
2)i,±(d− 4)i, . . . ,±(d− k)i}, where k = d or d− 1 according as d is even or odd, forms the set of

all distinct eigenvalues of A.

Orientation of hypercubes

Finally we present a new orientation φ to the hypercube Qd for which the skew energy equals the

energy of the underlying hypercube, distinct from the two orientations of hypercubes defined in [7].
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[4] M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J.

McDonald, M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436

(2012), 4512–4529.

[5] M. T. Chu, Inverse eigenvalue problems, SIAM Review, 40 (1998), 1–39.

[6] Y. Hou, T. Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, The

Electronic J Combin. 18 (2011), #156.

[7] G-X. Tian, On the skew energy of orientations of hypercubes, Linear Algebra Appl. 435 (2011),

2140–2149.

5



Enumerating the edge-colourings and total colourings of a regular

graph∗

S. Bessy† and F. Havet‡

Motivated by some algorithmic considerations, we are interested in computing the number of
edge colourings of a connected graph. Precisely, we prove that the maximum number of k-edge-
colourings of a connected k-regular graph on n vertices is k · ((k−1)!)n/2. Our proof is constructive
and leads to a branching algorithm enumerating all the k-edge-colourings of a connected k-regular
graph in time O∗(((k − 1)!)n/2) and polynomial space. In particular, we obtain a algorithm to
enumerate all the 3-edge-colourings of a connected cubic graph in time O∗(2n/2) = O∗(1.4143n)
and polynomial space. This improves the running time of O∗(1.5423n) of the algorithm due to
Golovach, Kratsh and Couturier [WG10 ].
In this talk, I will present our work and overview the known results on computing aspect of graph
coloring.

∗This work is supported by the French Agence Nationale de la Recherche under reference AGAPE ANR-09-BLAN-
0159.

†Université Montpellier 2 - CNRS, LIRMM. e-mail: Stephane.Bessy@lirmm.fr.
‡Projet Mascotte, I3S (CNRS, UNSA) and INRIA, Sophia Antipolis.

email: Frederic.Havet@inria.fr.
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From Topological Methods to Combinatorial
Proofs for Kneser Graphs

Daphne Der-Fen Liu
California State University, Los Angeles

Email: dliu@calstatela.edu

Abstract

Lovász [6] in 1978 confirmed the Kneser conjecture that the chro-
matic number of the Kneser graph KG(n, k) is equal to n − 2k + 2.
Since then, algebraic topology has became an important tool in solving
problems in combinatorics. In particular, various alternative proofs
and generalizations of the Lovász theorem have been developed (cf.
[1, 2, 7, 11]). Most of these proofs utilized methods or results in alge-
braic topology, mainly the Borsuk-Ulam theorem and its extensions.

On the other hand, combinatorial proofs for these remarkable re-
sults were also established. In 2004, using Tucker’s lemma [10], Ma-
toušek [8] presented the first combinatorial proof for the Lovász the-
orem, without any topological terms. In addition, Ziegler [11] gave
combinatorial proofs for various generalizations of the Kneser color-
ing theorem.

Chen [4] in 2011 confirmed the Johnson-Holroyd-Stahl conjecture
that the circular chromatic number of KG(n, k) also equals to n−2k+
2. A shorter proof of this result was given by Chang, Liu, and Zhu
[3]. Both proofs were based on Fan’s lemma [5] in algebraic topology.

We present a simple self-contained combinatorial proof for Chen’s
theorem, without topological terms. The method is by specializing a
constructive proof [9] of Fan’s lemma and using the labeling function
in [3]. Our approach also gives another simple self-contained combi-
natorial proof for the Lovász Theorem.
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Diffusion on Networks

Hong-Gwa Yeh
National Central University

hgyeh@math.ncu.edu.tw

In this talk, we survey the combinatorial models of several existing diffusion
problems over networks in areas such as economics, epidemiology, mathemat-
ics, politic and computer science.

Keywords: Spread of social influence, propagation model, viral marketing.
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On-line list colouring of graphs

Xuding Zhu

Abstract

Given a graph G and a mapping f : V (G) → {1, 2, . . . , }. The
f -list colouring game is played as follows: There are two players: A
and B. Initially, all vertices are uncoloured. The integer f(v) is the
number of permissible colours v can receive. At the ith round, Player
A selects a nonempty subset Xi of uncoloured vertices of G. This is
the set of vertices for which i is a permissible colour. Player B selects
an independent subset Ii contained in Xi. This is the set of vertices
coloured with colour i. After this move, vertices in Ii are coloured. The
game ends if every uncoloured vertex v has occurred in f(v) of the Xi’s,
i.e., has been given f(v) permissible colours. Player B wins the game
if at the end of the game, all vertices are coloured. Otherwise Player A
wins the game. The on-line choice number of G is the minimum intger
k such that for the constant mapping f(v) = k for all v, Player B has
a winning strategy in the f -list colouring game. In this talk, I will
survey some results on the study of on-line choice number of graphs.
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Permutation Patterns and ARM identities

Sen-Peng Eu
National University of Kaohsiung

speu@nuk.edu.tw

After the seminal work of Schmidt and Simion in 1985, the booming results
in 2000s and the proof of Stanley-Wilf conjecture by Tardos-Marcus in 2005,
permutation patterns nowadays is still a very active research topic in com-
binatorics with many important problems left unanswered. In the first part
of this expository talk we will give a quick survey of the history, the core
results and the trends on this subject. In the second half of the talk we
will introduce the concept of ARM-type identities and give several examples.
These examples are joint separately with Fu, Pan, Ting, and Yan.

Keywords: Permutation patterns, ARM identity.

11



The game L(d, 1)-labeling problem of graphs

David Kuo
National Dong Hwa University

davidk@mail.ndhu.edu.tw

Let G be a graph and let k be a positive integer. Consider the following two-
person game which is played on G: Alice and Bob alternate turns. A move
consists of selecting an unlabeled vertex v of G and assigning it a number
a from {0, 1, 2, · · · , k} satisfying the condition that, for all u ∈ V (G), u is
labeled by the number b previously, if d(u, v) = 1, then |a − b| ≥ d, and if
d(u, v) = 2, then |a−b| ≥ 1. Alice wins if all the vertices of G are successfully
labeled. Bob wins if an impasse is reached before all vertices in the graph
are labeled. The game L(d, 1)-labeling number of a graph G is the least k
for which Alice has a winning strategy. We use λ̃d

1(G) to denote the game
L(d, 1)-labeling number of G in the game Alice play first, and use λ̃d

2(G) to
denote the game L(d, 1)-labeling number of G in the game Bob play first. In
this talk, some results concerning this new problem will be introduced.
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On the target set selection problem

Chun-Ying Chiang
National Central University

chiang794@gmail.com

(Advisor: Hong-Gwa Yeh)

Consider the following hypothetical scenario as a motivating example.
A company wish to market a new product. The company has at hand a
description of the social network G formed among a sample of potential
customers, where the vertices represent customers and edges connect people
to their friends. The company wants to target key potential customers S
of the social network and persuade them into adopting the new product by
handing out free samples. We assume that individuals in S will be convinced
to adopt the new product after they receive a free sample, and the friends
of customers in S would be persuaded into buying the new product, which
in turn will recommend the product to other friends. The company hopes
that by word-of-mouth effects, convinced vertices in S can trigger a cascade
of further adoptions, and finally all potential customers will be persuaded to
buy the product.

A social network (G, θ) is usually modeled by a graph G together with
a threshold function θ : V (G) → N such that 1 ≤ θ(v) ≤ dG(v) for each
vertex v in G. Given a vertex subset S of a connected social network (G, θ).
Consider the following repetitive process played on (G, θ). At round 0 (the
beginning of the game), the vertices of S are colored black and the other
vertices are colored white. After that, at each round t > 0, all white vertices
v that have at least θ(v) black neighbors at the previous round t − 1 are
colored black. The colors of the other vertices do not change.

The process runs until no more white vertices can update colors from
white to black. The set S is called a target set for (G, θ). We are interested
in the following optimization problem: finding a target set S of smallest
possible size such that all vertices of V (G) \ S are black in the end.

Keywords: social networks, diffusion, viral marketing, influence spreading,
target set selection.
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Border Strip Decompositions On Two-Dimensional
Surfaces

Wei-Chia Tsai
National University of Kaohsiung

snowolf340@gmail.com

(Advisor: Sen-Peng Eu)

We enumerate the border strip decompositions of a rectangular Young di-
agram which is generalized in a manner similar to the topology of two-
dimensional surfaces such as a cylinder, Möbius band, torus, Klein bottle,
and projective plane, by identifying pairs of opposite edges of the diagram.

We also enumerate fixed points of border strip decompositions on the
surfaces under rotations, where a border strip decomposition is a fixed point
if it is invariant under the operations.

Keywords: border strip decompositions, two-dimensional surfaces, fixed
points.
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Bell Permutation Tableaux

Tze-Chu Ho
National University of Kaohsiung

johnmail5@gmail.com

(Advisor: Sen-Peng Eu)

The concept of permutation tableaux was introduced by Postnikov in the
context of enumeration of the totally positive Grassmannian cells. It is known
that the number of permutation tableaux of length n is n!. Corteel and
Nadeau gave a bijection φ between the set of permutation tableaux and
the set of permutations, and introduced L-Bell and R-Bell tableaux, both
counted by the Bell numbers, as two subclasses of the permutation tableaux.
Chen and Liu then characterized the corresponding permutations of the L-
Bell tableaux under the bijection φ.

In this thesis we introduce three new subclasses of permutation tableaux,
namely L′-Bell, R′-Bell, and B-Bell tableaux, and prove that they are also
counted by the Bell numbers. We give characterizations of R-Bell and B-Bell
tableaux in terms of pattern-avoiding permutations under the bijection φ.

We also introduce statistics on these five subclasses of tableaux and prove
that they are equidistributed with the p, q-Stirling numbers of Wach and
White on the 01-tableaux of Leroux. Meanwhile a new bijection consistent
with the above q-statistic, but different from Corteel and Nadeau’s, is given
between L-Bell tableaux and R-Bell tableaux.

We also investigate the cardinality of the intersection of two of these sub-
classes. It turns out that many familiar classical sequences appear. Among
them we prove that the cardinality of the intersection of the L-Bell and R-Bell
tableaux (of the same length) is a Bessel number.

Keywords: Permutation, Permutation tableaux, Bell numbers, 01-tableaux,
p, q-stirling numbers, L-Bell, R-Bell, B-Bell, L′-Bell, R′-Bell, Bessel

numbers.
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Relations Between Graphs

Jan Hubička; Jürgen Jost; Yangjing Long; Peter F. Stadler; Ling
Yang

Max Planck Institute for Mathematics in the Sciences
ylong@mis.mpg.de

(Advisor: Peter F. Stadler and Jürgen Jost)

Given two graphs G = (VG, EG) and H = (VH , EH), we ask under which
conditions there is a relation R ⊆ VG × VH that generates the edges of H
given the structure of graph G. This construction can be seen as a form
of multihomomorphism. It generalizes surjective homomorphisms of graphs
and naturally leads to notions of R-retractions, R-cores, and R-cocores of
graphs. Both R-cores and R-cocores of graphs are unique up to isomorphism
and can be computed in polynomial time.

Keywords: generalized surjective graph homomorphism, R-reduced graph,
R-retraction, binary relation, multihomomorphism, R-core, cocore.
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On the r-Equitable Coloring of Complete Bipartite
Graphs

Chun-Rong Liu
National Chiayi University
s0980183@mail.ncyu.edu.tw

(Advisor: Chih-Hung Yen)

A graph G consists of a nonempty vertex set V (G) and an edge set E(G).
Let k ≥ 1 be an integer. A (proper) k-coloring of a graph G is a mapping
f : V (G) → {1, 2, . . . , k} such that adjacent vertices have different images.
The images are called colors and all vertices of a fixed color constitute a
color class. Then a k-coloring of a graph G is said to be r-equitable for
any r ≥ 0 if the size of any two color classes differ by at most r. And,
a graph G is called r-equitably k-colorable if G has an r-equitable k-
coloring. Besides, the least k such that a graph G is r-equitably k-colorable
is called the r-equitable chromatic number of G and denoted χr=(G).
Also, the least n such that a graph G is r-equitably k-colorable for all k ≥ n
is called the r-equitable chromatic threshold of G and denoted χ∗

r=(G).
In fact, the notion of r-equitable colorability is a natural generalization
of the well-known equitable colorability, which is the case when r = 1.

A graph G is called a bipartite graph, denoted by G(X, Y ), if V (G)
can be partitioned into two subsets X and Y such that every edge of G joins
a vertex of X to a vertex of Y . Moreover, if every vertex of X is adjacent
to every vertex of Y , then we call G(X, Y ) a complete bipartite graph.
Besides, if the sizes of X and Y are s and t, respectively, then a complete
bipartite graph G(X, Y ) is denoted by Ks,t. When both s and t are equal
to some positive integer n, Ks,t = Kn,n is also called a balanced complete
bipartite graph.

In this thesis, we first propose a necessary and sufficient condition for a
(balanced) complete bipartite graph to be r-equitably k-colorable. Then we
derive explicit formulas related to the r-equitable chromatic number and the
r-equitable chromatic threshold of a (balanced) complete bipartite graph. Fi-
nally, we have some other results on the r-equitable k-coloring of a (balanced)
complete bipartite graph.

Keywords: Equitable coloring; r-Equitable coloring; Complete bipartite
graph; r-Equitable chromatic number; r-Equitable chromatic threshold.
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The strong chromatic index of cacti

Shao-Tang Liao
National Taiwan University
myflame123@yahoo.com.tw

(Advisor: Gerard Jennhwa Chang)

A strong edge coloring of a graph G is an assignment of colors to the edges
of G such that two distinct edges are colored differently if their distance is
at most two. The strong chromatic index of a graph G, denoted by χ′

s(G)
, is the minimum number of colors needed for a strong edge coloring of G.
For a graph G, define σ(G) := max

uv∈E(G)
(dG(u)+dG(v)−1), where dG(x) is the

degree of x. A cactus is a connected graph in which every block is an edge
or a cycle. In this thesis, we study strong chromatic edge coloring for cacti.
In particular, it is proved that for any cactus G, we have χ′

s(G) = σ(G) if
the length of any cycle is a multiple of 6; χ′

s(G) ≤ σ(G) + 1 if the length of

any cycle is even; and χ′
s(G) ≤ b3σ(G)−1

2
c in general except the case G = C5.

Keywords: Strong chromatic index, Cactus, Graph, Degree.
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Four Partition Problems of Graphs

Hsiang-Chun Hsu
National Taiwan University

hchsu0222@gmail.com

(Advisor: Gerard Jennhwa Chang)

We first study the first-fit chromatic numbers of graphs. Given a family F
of graphs which is closed under taking induced subgraphs and e(G) ≤ dn(G)
for any G ∈ F , where d > 0 is fixed, we give an upper bound for the first-fit
chromatic number of any graph in F . This result applies to d-degenerate
graphs, planar graphs, and outerplanar graphs.

We study the max-coloring problem of a vertex-weighted graph (G, c),
which attempts to partition V (G) into independent sets such that the sum
of the maximum weight in each independent set is minimum. We give an
upper bound for the number of sets needed in an optimal vertex partition
of a vertex-weighted r-partite graph. We then derive the Nordhaus-Gaddum
inequality for vertex-weighted graphs. We also consider the properties of the
perfection on vertex-weighted graphs.

The balanced decomposition number f(G) of a graph G is the minimum
` such that for any disjoint R, B ⊆ V (G) with |R| = |B| there is a partition
P of V (G) satisfying that G[S] is connected, |S ∩ R| = |S ∩ B| and |S| ≤ `
for any S ∈ P . We give a shorter proof of a known result that f(G) = 3

if and only if G is bn(G)
2
c-connected and G is not a complete graph. We

then extend the definition to k disjoint sets, and call the corresponding pa-
rameter the balanced k-decomposition number. We compute the balanced
k-decomposition numbers of trees and complete multipartite graphs.

The parity (strong parity) edge-chromatic number of a graph G is the
minimum number of colors used in an edge-coloring of G such that any path
(open walk) of positive length uses some color an odd number of times. We
prove that, for 3 ≤ m ≤ n and n ≡ 0,−1,−2 (mod 2dlg me), the (strong)
parity edge-chromatic number of Km,n is the least integer ` such that

(
`
k

)
is

even for each k with ` − n < k < m. We also consider the parity and the
strong parity edge-chromatic numbers of the products of graphs.

Keywords: first-fit chromatic numbers, max-coloring problem, balanced
decomposition numbers, parity edge-colorings.
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Lit-only sigma-game on nondegenerate graphs

Hau-wen Huang
National Center for Theoretical Sciences

poker80.am94g@nctu.edu.tw

A configuration of the lit-only σ-game on a graph Γ is an assignment of one
of two states, on or off, to each vertex of Γ. Given a configuration, a move
of the lit-only σ-game on Γ allows the player to choose an on vertex s of
Γ and change the states of all neighbors of s. In this talk, we introduce
the development of the lit-only σ-game on finite simple graphs, especially
nondegenerate graphs.

Keywords: Lit-only σ-game, group action, nondegenerate graph.
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On the study of position-based routing algorithms for
wireless ad hoc networks

Chih-Lung Yuan
Department of Applied Mathematics

National Chiao Tung University
longlong2886@hotmail.com

(Advisor: Chiuyuan Chen)

This thesis considers the problem of designing efficient position-based routing
algorithms for wireless ad hoc networks. A routing algorithm is position-
based if a node forwards its packet according to the position information
(i.e., coordinates in the plane). GREEDY, COMPASS, ELLIPSOID, and
FACE are four famous position-based routing algorithms. The former three
algorithms run very fast but cannot guarantee message delivery. On the
other hand, FACE does not run fast but it guarantees message delivery. It
is indeed a challenge to develop an algorithm that can run very fast and can
have high delivery rate at the same time. The purpose of this thesis is to
propose two such algorithms. Experimental results show that our algorithms
are quite good.

Keywords: wireless ad hoc network, position-based routing, delivery
guarantee, path dilation, unit disk graph.
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Computing Wide Diameters of Alternating Group Graphs

Wen-Hui Lee
Department of Computer Science and Information Engineering

National Chi Nan University Puli, Nantou Hsien, Taiwan, Republic
of China

s99321523@mail1.ncnu.edu.tw

(Advisor: Dr. Dyi-Rong Duh and Dr. Justie Su-Tzu Juan)

A set of all even permutation over n-objects is called alternating group of de-
gree n. Jwo, Lakshmivarahan and Dhall proposed alternating group graphs
in 1993. An alternating group graph is a Cayley graph. In comparison with
an n-dimensional star graph, ann-dimensional alternating group graph has
half the number of vertices and approximately twice its degree. Alternat-
ing group graphs have some favorable properties such as low diameter, rich
fault tolerance those are attractive for building massively parallel comput-
ers. Jwo, et al. presented that alternating group graphs are vertex symmetry,
edge symmetry, hierarchical, hamiltonian, embeddability, and broadcastabil-
ity. Accordingly, several researches investigated the topological properties
of alternating group graphs. For the purposes of evaluating maximum par-
allelism, minimum transmission delay, reliability and fault tolerant ability,
constructing vertex disjoint paths and determining wide diameters of inter-
connection networks are very important issues. Lin and Chiu (2002) proposed
a routing scheme for constructing node-to-node disjoint paths in alternating
group graphs. However, these paths constructed by Lin and Chiu may coin-
cident on one node. Furthermore, Lin and Chiu have not yet computed wide
diameters of alternating group graphs. This work derives a routing algorithm
for constructing a container of width 2(n−2) between a pair of vertices in an
alternating group graph with connectivity 2(n − 2). Based on the provided
algorithm, the wide diameter of an n-dimensional alternating group graph
can be computed as its diameter plus 1 or 2.

Keywords: Alternating group graphs, fault tolerance, wide diameter,
container, interconnection networks.
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Visual Multi-Secret Image Sharing Scheme by Shifting
Random Grids
Joy Jo-Yi Chang

Department of Computer Science and Information Engineering,
National Chi Nan University

s100321530@ncnu.edu.tw

(Advisor: Justie Su-Tzu Juan)

Visual cryptography (VC) is a visual secret sharing (VSS) method which
is different from traditional cryptography. Visual Cryptography was pro-
posed by Naor and Shamir in 1994. The technology combines traditional
cryptography with conception of information sharing, encoding a secret im-
age into n pieces of share images. We show the share images to participants
who will obtain unidentified images which cannot be restored to original se-
cret image when participants only have one share image. The main concept
of VC is needless using computer and cryptographic computation when de-
code the secret images. What is needed is to collect k pieces shared images
and superimposed them, then the original secret image can be distinguished,
decoded, and reconstructed by human visual system.

The visual secret sharing scheme we proposed uses the conception of
the random grid (RG). Recently, it has drawn more and more attention to
encode more than one secret image into two share images by RG-based VSS
techniques. But those researches can only encrypt at most four secret images
in one time. And the distortion of the reconstructed secret images will be
obvious when we increase the number of the secret images. In this thesis,
we propose a RG-based scheme which encrypts multi-secret images into two
shares by shifting random grids. Compared with the traditional VC-based
VSS, RG-based VSS need not to design the codebook of conventional VC
and the size of share images will not be expanded. Also, users can adjust the
distortion in our schemes. The concept of our schemes in this thesis calculates
each pixel of the secret images by shifting random grids. These schemes hope
all of the pixels on secret images achieve the best utilization and they reduce
the quantity of distortion when decrypting the secret images. So, users can
get more information by using shifting random grids techniques.

Keywords: Visual Cryptography; Visual Secret Sharing; Random Grids;
Multi-Secret Images; Share; Distortion; Codebook.
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Rainbow connection numbers of Cartesian product of
graphs

Yu-Jung Liang
National Dong Hwa University

m9811019@ems.ndhu.edu.tw

(Advisor: David Kuo)

Given a connected graph G together with a coloring f from the edge
set of G to a set of colors, where adjacent edges may be colored the same,
a u-v path P in G is said to be a rainbow path if no two edges of P are
colored the same. A u-v path P in G is said to be a rainbow u-v geodesic
in G if P is a rainbow u-v path whose length equals to the distance of u
and v. The graph G is rainbow-connected(resp., strongly rainbow-connected)
if G contains a rainbow u-v path(resp,. rainbow u-v geodesic) for every
two vertices u and v of G. In this case, the coloring f is called a rainbow
coloring(resp,. strong rainbow coloring) of G. A rainbow coloring(resp.,
strong rainbow coloring) of G using k colors is a rainbow k-coloring(resp.,
strong rainbow k-coloring) of G. The minimum k for which there exists a
rainbow k-coloring(resp., strong rainbow k-coloring) of G is called the rainbow
connection number(resp., strong rainbow connection number) of G and is
denoted by rc(G)(resp., src(G)). We study the rainbow connection numbers
and the strong rainbow connection numbers of Cartesian product of graphs,
where both of the two graphs are in F = {G : G is a path, a cycle, or a
complete graph}, or both of the two graphs are in T = {T : T is a tree}, in
this thesis. We show that if G is the Cartesian product of two graphs G1 and
G2, in F , then diam(G) = rc(G) = src(G), except that both G1 and G2 are
odd cycles. And we prove that if G is the Cartesian product of two trees T1

and T2, then rc(G) = diam(G), except that T2 is the path P2, and T1 satisfies
some special conditions, in which case the rainbow connection number of G
equals diam(G) + 1.

Keywords: rainbow coloring, strong rainbow coloring, Cartesian product,
path, cycle, tree.
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Outer-connected domination numbers of block graphs

Kuo-Hao Tu
National Dong Hwa University

m9811002@ems.ndhu.edu.tw

(Advisor: David Kuo)

Given a graph G, a set S is an outer-connected dominating set if every vertex
not in S is adjacent to some vertex in S and the subgraph induced by V \S is
connected. The outer-connected domination number r̃c(G) is the minimum
size of such a set. In this thesis, we present a linear-time algorithm for the
outer-connected domination problem in trees and block graphs, and gives
formulas to compute the outer-connected domination numbers of full k-ary
trees.

Keywords: dominating set, domination number, outer-connected
dominating set, outer-connected domination number, tree, block graph, full

k-ary tree..
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On Zero-Sum Flows and Flow Numbers of Undirected
Graphs

Shih-Wei Hu
Tunghai University

g98240003@thu.edu.tw

(Advisor: Tao-Ming Wang)

As an analogous concept of a nowhere-zero flow for directed graphs and a
special case of a nowhere-zero flow for bidirected graphs, we consider zero-
sum flows for undirected graphs in this thesis. For an undirected graph G, a
zero-sum flow is an assignment of non-zero integers to the edges such that
the sum of the values of all edges incident with each vertex is zero, and we
call it a zero-sum k-flow if the values of edges are less than k. Also as an
analogous concept of minimum flow numbers for directed graphs, we define
the zero-sum minimum flow number of G as the least positive integer
k for which G admits a zero-sum k-flow, and denoted by F (G). On one
hand we extend the study of zero-sum integer flows to abelian group flows,
and emphasize over the Zk case. On the other hand, we extend the concept
zero-sum flow to a more general one, namely a constant-sum flow. The
constant under a constant-sum flow is called an index of G, and I(G) is
denoted as the index set of all possible indices of G. In this thesis, among
others we have the following results and most of them have been already
published:

Theorem 1 The zero-sum minimum flow number of Fn graphs are as fol-
lows:

F (Fn) =


∞, n = 1, 2, 3.
3, n = 3k + 1, k ≥ 1.
4, otherwise.

Theorem 2 The zero-sum minimum flow number of Wn graphs with n ≥ 3
are as follows:

F (Wn) =


5, n = 5.
3, n = 3k, k ≥ 1.
4, otherwise.
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Theorem 3 Suppose G be a r-regular graph and |V (G)| = n, then for all
r ≥ 3 we have:

1. F (G) = 2 if r ≡ 0(mod 4) or r ≡ 2(mod 4) with even n.

2. F (G) = 3 if r ≡ 2(mod 4) with odd n or G has a 1-factor with odd r.

3. F (G) ≤ 4 if G is 2-edge-connected and r = 5, 11, 13, 15, 17, · · · .

4. F (G) ≤ 5 if r 6= 5, and F (G) ≤ 7 for G is 5-regular.

Theorem 4 The constant-sum flow index sets of Fn graphs are as follows:

I(G) =


∅, n = 3.
2Z, n = 2k, k ≥ 2.
Z, n = 2k + 1, k ≥ 2.

Theorem 5 The constant-sum flow index sets of Wn graphs are as follows:

I(G) =

{
2Z, n = 2k, k ≥ 2.
Z, n = 2k + 1, k ≥ 1.

Theorem 6 The constant-sum flow index sets of r-regular graphs G of order
n, are as follows:

I(G) =


Z∗, r = 1.
Z, r = 2 and G contains even cycles only.
2Z∗, r = 2 and G contains an odd cycle.
2Z, r ≥ 3, r even and n odd .
Z, r ≥ 3, and n even .

Theorem 7 If G is a 4r-regular graph with even vertices and connected, then
I4(G) = Z4 for all r ≥ 2, where I4(G) is the constant-sum Z4-flow index set
of G.

Keywords: Zero-Sum Flow, Zero-Sum Flow Number, Constant-Sum Flow,
Constant-Sum Group Flow, Regular Graph, Eulerian Graph, Fan, Wheel.
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The Forbidden Subposet Problems and Turán Problems

Wei-Tian Li
Academia Sinica

weitianli@math.sinica.edu.tw

A family F of subsets of [n] := {1, . . . , n} is said to be P -free if for a given
partially ordered set (poset) P = (P,≤), there is no order-preserving injection
from (P,≤) to (F ,⊆). The Lubell function of a family F of subsets of [n] is

h̄n(F) :=
∑

E∈F
(

n
|E|

)−1
which can be viewed as the weighted sum of sets in F .

We will study the limit of the sequence {λn(P )}, where λn(P ) := maxF h̄n(F)
over all P -free families F for some posets P and find the connection between
this limit and the Turán density of some hypergrpahs.

Keywords: Lubell function, forbidden subposets, Turán density.
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Facebook – A smaller world

Wei-Lin Kao
Department of Applied Mathematics

National Chiao Tung University
5rainkao@gmail.com

(Advisor: Hung-Lin Fu)

“Six degree of Separation” told us: any two individuals, selected randomly
from almost anywhere on the planet, can know each other via a chain of
average no more than six intermediate acquaintances. There are more tens
of millions of people around the world, but the social network is a small world.
With the dramatic growth of the World Wide Web and the Internet, even the
rise of the social network-Facebook, the distance between two people seems
much shorter than before. Through the experiment result, on Facebook, any
two individuals are connected in five steps or fewer, on average. The world
seems smaller. In this thesis, we construct a dynamic random graph model
to simulate Facebook. We regard each user of Facebook as a vertex and
the friendship between two users as an edge, and try to depict the pattern
of the random graph as time being approximately infinity. In the process of
the construction, we applied different probability distributions to adding new
vertices and edges, and deleting existing vertices and edges. Based on the
preferential attachment and the idea of the weaker tends to be weeded out,
the model seems to conform with Facebook. Furthermore, we prove that the
degree distribution satisfies the power-law, a common feature of the small
world networks. Therefore, we conclude that Facebook is also a small world.

Keywords: Facebook, small world, power law.
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A Mathematical Model for Finding the Culprit Who
Spreads Rumors

Zi-Hui Lee
Department of Applied Mathematics

National Chiao Tung University
smile.am99g@g2.nctu.edu.tw

(Advisor: Hung-Lin Fu)

In this thesis, we introduce a rumor spreading model based on the common
susceptible-infected (SI) model which is a well known epidemiological model.
We describe the maximum likelihood estimators of graphs and we evaluate
the detection probabilities of finding the rumor source in d-regular trees. We
observe that: For paths, the detection probability of finding the rumor source
scales as t−1/2, which approaches 0 as t approaches infinity. For regular trees,
we find an explicit bound of the detection probabilities of finding the source
in d-regular trees. As a consequence, for d = 3, the detection probability
approaches 1/4, this result has been obtained earlier by using a random
graph model.

Keywords: rumor spreading model, rumor center, detection probability.
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The game Grundy arboricity of graphs

Jin-Yu Liu
National Sun Yat-sen University

jinyu.97@gmail.com

(Advisor: Xuding Zhu, Tsai-Lien Wong)

Given a graph G = (V, E), two players, Alice and Bob, alternate their turns
to choose an uncolored edges to be colored. Whenever an uncolored edge is
chosen, it is colored by the least positive integer so that no monochromatic
cycle is created. Alice’s goal is to minimize the total number of colors used in
the game, while Bob’s goal is to maximize it. The game Grundy arboricity
of G is the number of colors used in the game when both players use optimal
strategies. This thesis discusses the game Grundy arboricity of graphs. It is
proved that if a graph G has arboricity k, then the game Grundy arboricity
of G is at most 3k − 1. If a graph G has an acyclic orientation D with
maximum out-degree at most k, then the game Grundy arboricity of G is at
most 3k − 2.

Keywords: arboricity, game Grundy arboricity, acyclic orientation,
outerplanar graph, coloring game.
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