The spectral radius of connected graphs with the independence number

晋亚磊

zzuedujinyalei@163.com

(2014 年组合数学新苗研讨会) This work is joint with my advisor Xiao-Dong Zhang.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Basic definition and background

- O The related theorem
- Open problems

Definition

Adjacency matrix: $A(G) = (a_{ij})$, where $a_{ij} = 1$ if and only if $i \sim j$.

Definition

Adjacency matrix: $A(G) = (a_{ij})$, where $a_{ij} = 1$ if and only if $i \sim j$.

Definition

Degree diagonal matrix: $D(G) = diag(d(u) : u \in V)$,where d(u) is the degree of u in G.

Definition

Adjacency matrix: $A(G) = (a_{ij})$, where $a_{ij} = 1$ if and only if $i \sim j$.

Definition

Degree diagonal matrix: $D(G) = diag(d(u) : u \in V)$,where d(u) is the degree of u in G.

Definition

signless Laplacian matrix: Q(G) = D(G) + A(G).

For a matrix A.

Definition

The spectral radius of A: The largest absolute value of the eigenvalues of A.

For A(G), Q(G), the corresponding spectral radius are $\mu(G), q(G)$.

For a matrix A.

Definition

The spectral radius of A: The largest absolute value of the eigenvalues of A.

For A(G), Q(G), the corresponding spectral radius are $\mu(G), q(G)$.

Definition

Turán Graph $T_{n,t}$: A complete t-partite graph, the cardinality of each part is $\lfloor \frac{n}{t} \rfloor$ or $\lceil \frac{n}{t} \rceil$.

Turán Theorem (1941, P. Turán)

Let G be a graph of order n not containing K_{t+1} . If $n = kt + r, 0 \le r < t$, then

$$e(G) \le e(T_{n,t}) = \frac{t^2 - t}{2}k^2 + (t - 1)rk + \frac{r(r - 1)}{2}$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Turán Theorem (1941, P. Turán)

Let G be a graph of order n not containing K_{t+1} . If $n = kt + r, 0 \le r < t$, then

$$e(G) \le e(T_{n,t}) = \frac{t^2 - t}{2}k^2 + (t-1)rk + \frac{r(r-1)}{2}$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Definition

 $i_s(G)$: The number of s-independent set of G. $k_s(G)$: The number of s-clique of G.

Turán Theorem (1941, P. Turán)

Let G be a graph of order n not containing K_{t+1} . If $n = kt + r, 0 \le r < t$, then

$$e(G) \le e(T_{n,t}) = \frac{t^2 - t}{2}k^2 + (t-1)rk + \frac{r(r-1)}{2}$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Definition

 $i_s(G)$: The number of s-independent set of G. $k_s(G)$: The number of s-clique of G.

Definition

 $i(G): \max\{s: G \text{ has } s\text{-independent set}\}.$ $w(G): \max\{s: G \text{ has } s\text{-clique}\}.$

Expanded Turán Theorem (1978, B. Bollobás)

Let G be a graph of order n with clique number w. Then

$$k_s(G) \le k_s(T_{n,t}), \text{ for } 2 \le s \le w.$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Expanded Turán Theorem (1978, B. Bollobás)

Let G be a graph of order n with clique number w. Then

$$k_s(G) \le k_s(T_{n,t}), \text{ for } 2 \le s \le w.$$

Moreover, equality holds if and only if $G = T_{n.t}$.

Problem 1: How about the relation between e(G) and the spectral radius of the adjacency matrix A(G)?

For the adjacency matrix A(G) of G and the largest eigenvalue $\mu(G),$ by Rayleigh quotient,

$$\frac{2e(G)}{n} \le \mu(G) \Longrightarrow e(G) \le \frac{n\mu(G)}{2}.$$

For the adjacency matrix A(G) of G and the largest eigenvalue $\mu(G),$ by Rayleigh quotient,

$$\frac{2e(G)}{n} \le \mu(G) \Longrightarrow e(G) \le \frac{n\mu(G)}{2}.$$

Spectral Turán Theorem (1998, B. Guiduli, 2007, V. Nikiforov)

Let G be a simple graph of order n not containing K_{t+1} as a subgraph. Then

$$\mu(G) \le \mu(T_{n,t})$$

Moreover, equality holds if and only if $G = T_{n,t}$.

For the adjacency matrix A(G) of G and the largest eigenvalue $\mu(G),$ by Rayleigh quotient,

$$\frac{2e(G)}{n} \le \mu(G) \Longrightarrow e(G) \le \frac{n\mu(G)}{2}.$$

Spectral Turán Theorem (1998, B. Guiduli, 2007, V. Nikiforov)

Let G be a simple graph of order n not containing K_{t+1} as a subgraph. Then

$$\mu(G) \le \mu(T_{n,t})$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Spectral Turán Theorem \implies Turán Theorem.

 Problem 1: How about the relation between e(G) and the spectral radius of the Signless Laplacian matrix Q(G)?

Problem 1: How about the relation between e(G) and the spectral radius of the Signless Laplacian matrix Q(G)?

Spectral Turán Theorem (2013, B. He, X.-D. Zhang, Y.-L. Jin)

Let G be a simple graph of order n not containing $K_{t+1}, \ t>2$ as a subgraph. Then

$$q(G) \le q(T_{n,t})$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Problem 1: How about the relation between e(G) and the spectral radius of the Signless Laplacian matrix Q(G)?

Spectral Turán Theorem (2013, B. He, X.-D. Zhang, Y.-L. Jin)

Let G be a simple graph of order n not containing $K_{t+1}, \ t>2$ as a subgraph. Then

$$q(G) \le q(T_{n,t})$$

Moreover, equality holds if and only if $G = T_{n,t}$.

Spectral Turán Theorem \implies Turán Theorem.

8/19

イロン イロン イヨン イヨン ニヨー

For a simple graph G,

$$w(G) = i(G^c),$$

$$e(G) + e(G^c) = n(n-1)/2.$$

Then we have two types of the Turán Theorem.

For a simple graph G,

$$w(G) = i(G^c),$$

$$e(G) + e(G^c) = n(n-1)/2.$$

Then we have two types of the Turán Theorem.

Turán Theorem (1941, P. Turán)

Let ${\cal G}$ be a graph of order n not containing $(t+1)\mbox{-independent}$ set. Then

$$e(G) \ge e(T_{n,t}^c).$$

Moreover, equality holds if and only if $G = T_{n,t}^c$.

9/19

Sometimes NO!

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G) = \alpha$, then $\mu(G) \ge \lceil \frac{n}{\alpha} \rceil - 1$.

Sometimes NO!

	Theorem (2011	V. I	Nikiforov
--	-----------	------	------	-----------

Let G be a simple graph and $i(G) = \alpha$, then $\mu(G) \ge \lceil \frac{n}{\alpha} \rceil - 1$.

Problem 3: When does the above equality hold?

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G) = \alpha$, then $\mu(G) \ge \lceil \frac{n}{\alpha} \rceil - 1$.

Problem 3: When does the above equality hold?

An interesting problem!

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G) = \alpha$, then $\mu(G) \ge \lceil \frac{n}{\alpha} \rceil - 1$.

Problem 3: When does the above equality hold?

An interesting problem!

Problem 4: Consider any connected graph G of order n and $i(G)=\alpha$, whether there is a graph H such that

$$\mu(G) \geq \mu(H)$$

the equality holds if and only if G = H?

10/19

Theorem (2009 Xu, Hong, Shu and Zhai)

Let G be a connected graph of order n with the independence number α . If $\alpha \in \{1, 2, \lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil + 1, n - 3, n - 2, n - 1\}$, then the extremal graphs with smallest spectral radius have been characterized.

Theorem (2012 Du and Shi)

Let G be a connected graph of order $n=k\alpha\geq 108$ with the independence number $\alpha.$ If $\alpha=3$ or 4, then

 $\mu(G) \ge \mu(P_{n,\alpha}),$

where graph $P_{n,\alpha}$ is obtained from a path of order α by replacing each vertex to a clique of order k and has exactly $2\alpha-2$ cut vertices.

Let

$$\mathcal{T}_{n,\alpha} = \{ \text{ all clique trees of order } n \},$$

 $\mathcal{G}_{n,\alpha} = \{ \text{ all connected graphs of order } n, \text{ the independence number } \alpha \}.$

where the clique trees are obtained from a tree of order α by replacing each vertex to a clique of order $\lfloor \frac{n}{\alpha} \rfloor$ or $\lceil \frac{n}{\alpha} \rceil$.

Theorem (2014 Jin and Zhang)

If $n = k\alpha$ and $k > \frac{17\alpha+15}{8}$, then $P_{n,\alpha}$ is the only graph having the minimum spectral radius in $\mathcal{G}_{n,\alpha}$. In other words, for any $G \in \mathcal{G}_{n,\alpha}$, $\mu(G) \ge \mu(P_{n,\alpha})$ with equality if and only if $G = P_{n,\alpha}$.

Lemma (2014 Jin and Zhang)

Let $n = k\alpha$ and $k > \frac{17\alpha+15}{8}$. If a connected graph G has the minimum spectra radius among all graphs in $\mathcal{G}_{n,\alpha}$, then $G \in \mathcal{T}_{n,\alpha}$.

Lemma (2014 Jin and Zhang)

Let $n = k\alpha > 2\alpha$ and $G \in \mathcal{T}_{n,\alpha}$ be a graph obtained by joining an edge from a non-cut vertex of a graph $H \in \mathcal{T}_{n-k(l+p),\alpha-(l+p)}$ and a non-cut vertex of $P_{k(l+p),l+p}$. Let G' be the graph obtained from G by deleting the edge v_3v_4 and adding edge v_1v_4 . If G has an induced subgraph $P_{k(2l+p),(2l+p)}$ containing v_1 , then $\mu(G') > \mu(G)$.

Lemma (2014 Jin and Zhang)

Let $n = k\alpha > 2\alpha$, $H_{p,l} \in \mathcal{T}_{n,\alpha}$ be a graph obtained by joining two edges from two non-cut vertices of a graph $H \in \mathcal{T}_{n-k(l+p),\alpha-(l+p)}$ with a non-cut vertex of $P_{kp,p}$ and a non-cut vertex of $P_{kl,l}$, where $H \neq K_k$ and $p \ge l \ge 1$. Then $\psi(H_{p,l}, x) < \psi(H_{p+1,l-1}, x)$ for $x \ge \mu(H_{p+1,l-1})$. Further $\mu(H_{p,l}) > \mu(H_{p+1,l-1})$.

Conjecture(2012 Du and Shi)

Conjecture. For $k, n, \alpha \in \mathbb{N}$, let $G \in \mathcal{G}_{n,\alpha}$ have the minimum spectral radius in $\mathcal{G}_{n,\alpha}$. Then for sufficiently large n,

 $\begin{array}{ll} (1) \ G \cong F(k,k,k+1) \ for \ \alpha = 3, \ n = 3k+1, \\ (2) \ G \cong F(k+1,k,k+1) \ for \ \alpha = 3 \ and \ n = 3k+2, \\ (3) \ G \cong F(k,k,k,k+1) \ for \ \alpha = 4 \ and \ n = 4k+1, \\ (4) \ G \cong F(k+1,k,k,k+1) \ for \ \alpha = 4 \ and \ n = 4k+2, \\ (5) \ G \cong F(k+1,k,k+1,k+1) \ for \ \alpha = 4 \ and \ n = 4k+3. \end{array}$

THANKS FOR YOUR ATTENTIONS!