The spectral radius of connected graphs with

the independence number

晋亚䂞

zzuedujinyalei＠163．com
（2014 年组合数学新苗研讨会）
This work is joint with my advisor Xiao－Dong Zhang．

- Basic definition and background
(2) The related theorem
- Open problems

A simple graph $G=(V(G), E(G))$, vertex set $V=\{1,2, \ldots, n\}$. Denote by $i \sim j$ when i is adjacent with j.

A simple graph $G=(V(G), E(G))$, vertex set $V=\{1,2, \ldots, n\}$. Denote by $i \sim j$ when i is adjacent with j.

Definition

Adjacency matrix: $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if and only if $i \sim j$.

A simple graph $G=(V(G), E(G))$, vertex set $V=\{1,2, \ldots, n\}$. Denote by $i \sim j$ when i is adjacent with j.

Definition

Adjacency matrix: $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if and only if $i \sim j$.

Definition

Degree diagonal matrix: $D(G)=\operatorname{diag}(d(u): u \in V)$, where $d(u)$ is the degree of u in G.

A simple graph $G=(V(G), E(G))$, vertex set $V=\{1,2, \ldots, n\}$. Denote by $i \sim j$ when i is adjacent with j.

Definition

Adjacency matrix: $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if and only if $i \sim j$.

Definition

Degree diagonal matrix: $D(G)=\operatorname{diag}(d(u): u \in V)$, where $d(u)$ is the degree of u in G.

Definition

signless Laplacian matrix: $Q(G)=D(G)+A(G)$.

For a matrix A.

Definition

The spectral radius of A : The largest absolute value of the eigenvalues of A.

For $A(G), Q(G)$, the corresponding spectral radius are $\mu(G), q(G)$.

For a matrix A.

Definition

The spectral radius of A : The largest absolute value of the eigenvalues of A.

For $A(G), Q(G)$, the corresponding spectral radius are $\mu(G), q(G)$.

Definition

Turán Graph $T_{n, t}$: A complete t-partite graph, the cardinality of each part is $\left\lfloor\frac{n}{t}\right\rfloor$ or $\left\lceil\frac{n}{t}\right\rceil$.

Turán Theorem (1941, P. Turán)

Let G be a graph of order n not containing K_{t+1}. If $n=k t+r, 0 \leq r<t$, then

$$
e(G) \leq e\left(T_{n, t}\right)=\frac{t^{2}-t}{2} k^{2}+(t-1) r k+\frac{r(r-1)}{2}
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Turán Theorem (1941, P. Turán)

Let G be a graph of order n not containing K_{t+1}. If $n=k t+r, 0 \leq r<t$, then

$$
e(G) \leq e\left(T_{n, t}\right)=\frac{t^{2}-t}{2} k^{2}+(t-1) r k+\frac{r(r-1)}{2}
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Definition

$i_{s}(G)$: The number of s-independent set of G.
$k_{s}(G)$: The number of s-clique of G.

Turán Theorem (1941, P. Turán)

Let G be a graph of order n not containing K_{t+1}. If $n=k t+r, 0 \leq r<t$, then

$$
e(G) \leq e\left(T_{n, t}\right)=\frac{t^{2}-t}{2} k^{2}+(t-1) r k+\frac{r(r-1)}{2}
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Definition

$i_{s}(G)$: The number of s-independent set of G.
$k_{s}(G)$: The number of s-clique of G.

Definition

$i(G): \max \{s: G$ has s-independent set $\}$.
$w(G): \max \{s: G$ has s-clique $\}$.

Expanded Turán Theorem (1978, B. Bollobás)

Let G be a graph of order n with clique number w. Then

$$
k_{s}(G) \leq k_{s}\left(T_{n, t}\right), \text { for } 2 \leq s \leq w .
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Expanded Turán Theorem (1978, B. Bollobás)

Let G be a graph of order n with clique number w. Then

$$
k_{s}(G) \leq k_{s}\left(T_{n, t}\right), \text { for } 2 \leq s \leq w .
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Problem 1: How about the relation between $e(G)$ and the spectral radius of the adjacency matrix $A(G)$?

For the adjacency matrix $A(G)$ of G and the largest eigenvalue $\mu(G)$, by Rayleigh quotient,

$$
\frac{2 e(G)}{n} \leq \mu(G) \Longrightarrow e(G) \leq \frac{n \mu(G)}{2}
$$

For the adjacency matrix $A(G)$ of G and the largest eigenvalue $\mu(G)$, by Rayleigh quotient,

$$
\frac{2 e(G)}{n} \leq \mu(G) \Longrightarrow e(G) \leq \frac{n \mu(G)}{2}
$$

Spectral Turán Theorem (1998, B. Guiduli, 2007, V. Nikiforov)

Let G be a simple graph of order n not containing K_{t+1} as a subgraph. Then

$$
\mu(G) \leq \mu\left(T_{n, t}\right)
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

For the adjacency matrix $A(G)$ of G and the largest eigenvalue $\mu(G)$, by Rayleigh quotient,

$$
\frac{2 e(G)}{n} \leq \mu(G) \Longrightarrow e(G) \leq \frac{n \mu(G)}{2}
$$

Spectral Turán Theorem (1998, B. Guiduli, 2007, V. Nikiforov)

Let G be a simple graph of order n not containing K_{t+1} as a subgraph. Then

$$
\mu(G) \leq \mu\left(T_{n, t}\right)
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Spectral Turán Theorem \Longrightarrow Turán Theorem.

Problem 1: How about the relation between $e(G)$ and the spectral radius of the Signless Laplacian matrix $Q(G)$?

Problem 1: How about the relation between $e(G)$ and the spectral radius of the Signless Laplacian matrix $Q(G)$?

Spectral Turán Theorem (2013, B. He, X.-D. Zhang, Y.-L. Jin)

Let G be a simple graph of order n not containing $K_{t+1}, t>2$ as a subgraph. Then

$$
q(G) \leq q\left(T_{n, t}\right)
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Problem 1: How about the relation between $e(G)$ and the spectral radius of the Signless Laplacian matrix $Q(G)$?

Spectral Turán Theorem (2013, B. He, X.-D. Zhang, Y.-L. Jin)

Let G be a simple graph of order n not containing $K_{t+1}, t>2$ as a subgraph. Then

$$
q(G) \leq q\left(T_{n, t}\right)
$$

Moreover, equality holds if and only if $G=T_{n, t}$.

Spectral Turán Theorem \Longrightarrow Turán Theorem.

For a simple graph G,

$$
\begin{aligned}
w(G) & =i\left(G^{c}\right), \\
e(G)+e\left(G^{c}\right) & =n(n-1) / 2 .
\end{aligned}
$$

Then we have two types of the Turán Theorem.

For a simple graph G,

$$
\begin{aligned}
w(G) & =i\left(G^{c}\right), \\
e(G)+e\left(G^{c}\right) & =n(n-1) / 2 .
\end{aligned}
$$

Then we have two types of the Turán Theorem.
Turán Theorem (1941, P. Turán)
Let G be a graph of order n not containing $(t+1)$-independent set. Then

$$
e(G) \geq e\left(T_{n, t}^{c}\right)
$$

Moreover, equality holds if and only if $G=T_{n, t}^{c}$.

Problem 2: Whether we have two types of the Spectral Turán Theorem?

Problem 2: Whether we have two types of the Spectral Turán Theorem?

Sometimes NO!

Problem 2: Whether we have two types of the Spectral Turán Theorem?

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G)=\alpha$, then $\mu(G) \geq\left\lceil\frac{n}{\alpha}\right\rceil-1$.

Problem 2: Whether we have two types of the Spectral Turán Theorem?

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G)=\alpha$, then $\mu(G) \geq\left\lceil\frac{n}{\alpha}\right\rceil-1$.

Problem 3: When does the above equality hold?

Problem 2: Whether we have two types of the Spectral Turán Theorem?

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G)=\alpha$, then $\mu(G) \geq\left\lceil\frac{n}{\alpha}\right\rceil-1$.

Problem 3: When does the above equality hold?
An interesting problem!

Problem 2: Whether we have two types of the Spectral Turán Theorem?

Sometimes NO!

Theorem (2011 V. Nikiforov)

Let G be a simple graph and $i(G)=\alpha$, then $\mu(G) \geq\left\lceil\frac{n}{\alpha}\right\rceil-1$.

Problem 3: When does the above equality hold?

An interesting problem!

Problem 4: Consider any connected graph G of order n and $i(G)=\alpha$, whether there is a graph H such that

$$
\mu(G) \geq \mu(H)
$$

the equality holds if and only if $G=H$?

Theorem (2009 Xu, Hong, Shu and Zhai)

Let G be a connected graph of order n with the independence number α. If $\alpha \in\left\{1,2,\left\lceil\frac{n}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil+1, n-3, n-2, n-1\right\}$, then the extremal graphs with smallest spectral radius have been characterized.

Theorem (2012 Du and Shi)

Let G be a connected graph of order $n=k \alpha \geq 108$ with the independence number α. If $\alpha=3$ or 4 , then

$$
\mu(G) \geq \mu\left(P_{n, \alpha}\right),
$$

where graph $P_{n, \alpha}$ is obtained from a path of order α by replacing each vertex to a clique of order k and has exactly $2 \alpha-2$ cut vertices.

Let

$$
\mathcal{T}_{n, \alpha}=\{\text { all clique trees of order } n\},
$$

$\mathcal{G}_{n, \alpha}=\{$ all connected graphs of order n, the independence number $\alpha\}$. where the clique trees are obtained from a tree of order α by replacing each vertex to a clique of order $\left\lfloor\frac{n}{\alpha}\right\rfloor$ or $\left\lceil\frac{n}{\alpha}\right\rceil$.

Theorem (2014 Jin and Zhang)

If $n=k \alpha$ and $k>\frac{17 \alpha+15}{8}$, then $P_{n, \alpha}$ is the only graph having the minimum spectral radius in $\mathcal{G}_{n, \alpha}$. In other words, for any $G \in \mathcal{G}_{n, \alpha}$, $\mu(G) \geq \mu\left(P_{n, \alpha}\right)$ with equality if and only if $G=P_{n, \alpha}$.

Lemma (2014 Jin and Zhang)

Let $n=k \alpha$ and $k>\frac{17 \alpha+15}{8}$. If a connected graph G has the minimum spectra radius among all graphs in $\mathcal{G}_{n, \alpha}$, then $G \in \mathcal{T}_{n, \alpha}$.

Lemma (2014 Jin and Zhang)

Let $n=k \alpha>2 \alpha$ and $G \in \mathcal{T}_{n, \alpha}$ be a graph obtained by joining an edge from a non-cut vertex of a graph $H \in \mathcal{T}_{n-k(l+p), \alpha-(l+p)}$ and a non-cut vertex of $P_{k(l+p), l+p}$. Let G^{\prime} be the graph obtained from G by deleting the edge $v_{3} v_{4}$ and adding edge $v_{1} v_{4}$. If G has an induced subgraph $P_{k(2 l+p),(2 l+p)}$ containing v_{1}, then $\mu\left(G^{\prime}\right)>\mu(G)$.

Lemma (2014 Jin and Zhang)

Let $n=k \alpha>2 \alpha, H_{p, l} \in \mathcal{T}_{n, \alpha}$ be a graph obtained by joining two edges from two non-cut vertices of a graph $H \in \mathcal{T}_{n-k(l+p), \alpha-(l+p)}$ with a non-cut vertex of $P_{k p, p}$ and a non-cut vertex of $P_{k l, l}$, where $H \neq K_{k}$ and $p \geq l \geq 1$. Then $\psi\left(H_{p, l}, x\right)<\psi\left(H_{p+1, l-1}, x\right)$ for $x \geq \mu\left(H_{p+1, l-1}\right)$. Furhter $\mu\left(H_{p, l}\right)>\mu\left(H_{p+1, l-1}\right)$.

Conjecture(2012 Du and Shi)

Conjecture. For $k, n, \alpha \in \mathbb{N}$, let $G \in \mathcal{G}_{n, \alpha}$ have the minimum spectral radius in $\mathcal{G}_{n, \alpha}$. Then for sufficiently large n,
(1) $G \cong F(k, k, k+1)$ for $\alpha=3, n=3 k+1$,
(2) $G \cong F(k+1, k, k+1)$ for $\alpha=3$ and $n=3 k+2$,
(3) $G \cong F(k, k, k, k+1)$ for $\alpha=4$ and $n=4 k+1$,
(4) $G \cong F(k+1, k, k, k+1)$ for $\alpha=4$ and $n=4 k+2$,
(5) $G \cong F(k+1, k, k+1, k+1)$ for $\alpha=4$ and $n=4 k+3$.

Fig. 1. The graph $F(r, s, t)$.

THANKS FOR YOUR ATTENTIONS!

