The Number of 2-Protected Nodes in Tries and PATRICIA Tries

Guan-Ru Yu

Department of Applied Mathematics

National Chiao Tung University

August 2nd, 2014

Three main classes of digital trees

- Digital search trees (DSTs)
- Tries
- PATRICIA tries

Digital search trees (DSTs)

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

Digital search trees (DSTs)

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

Digital search trees (DSTs)

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

Digital search trees (DSTs)

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

Digital search trees (DSTs)

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

Digital search trees (DSTs)

$$
\begin{aligned}
R_{1} & =000001 \cdots \\
R_{2} & =000110 \cdots \\
R_{3} & =110111 \cdots \\
R_{4} & =011011 \cdots \\
R_{5} & =100001 \cdots \\
R_{6} & =111110 \cdots
\end{aligned}
$$

Digital search trees (DSTs)

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

Tries

$$
\begin{aligned}
& R_{1}=000001 \cdots \\
& R_{2}=000110 \cdots \\
& R_{3}=110111 \cdots \\
& R_{4}=011011 \cdots \\
& R_{5}=100001 \cdots \\
& R_{6}=111110 \cdots
\end{aligned}
$$

PATRICIA tries

$$
\begin{aligned}
R_{1} & =000001 \cdots \\
R_{2} & =000110 \cdots \\
R_{3} & =110111 \cdots \\
R_{4} & =011011 \cdots \\
R_{5} & =100001 \cdots \\
R_{6} & =111110 \cdots
\end{aligned}
$$

Random model

- (In probability theory) A sequence of RVs is independent and identically distributed (iid): same probability distribution and all are mutually independent.
- X_{1}, X_{2}, \ldots is a random string: X_{1}, X_{2}, \ldots is an iid sequence of RV s with $P\left(X_{n}=0\right)=p$ and $P\left(X_{n}=1\right)=q:=1-p$.
- A digital tree is a random digital tree of size n : constructed from n infinite $\{0,1\}$-random strings tries.

Size

Size of digital trees: number of internal nodes.

Size

Size of digital trees: number of internal nodes.

Size of tries

- Mean: Knuth (1973).

Size of tries

- Mean: Knuth (1973).
- Variance: Two groups independently.
- 1. P. Kirschenhofer and H. Prodinger: symmetric case ($p=q=1 / 2$) with explicit expressions for involved constants and periodic functions (1991).
- 2. P. Jacquet and M. Regnier: general case (symmetric and asymmetric case) but without explicit expressions for involved constants and periodic functions (1988) partial results on explicit expressions of involved constants and periodic functions (1989).

2-protected nodes

2-protected nodes: nodes that have distance at least 2 from leafs.

2-protected nodes

2-protected nodes: nodes that have distance at least 2 from leafs.

2-protected nodes in tries

- Mean: J. Gaither, Y. Homma, M. Sellke and M. D. Ward (2012).

2-protected nodes in tries

- Mean: J. Gaither, Y. Homma, M. Sellke and M. D. Ward (2012).
- Variance: J. Gaither and M. D. Ward (2013).
- Some mistakes:

1. wrong error term.
2. forgot to pull out the average value.

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Main goal of thesis

- Re-derive (and correcte) the results of J. Gaither, Y. Homma, M. Sellke and M. D. Ward by using the method of M. Fuchs, H.-K. Hwang, and V. Zacharovas.

Main goal of thesis

- Re-derive (and correcte) the results of J. Gaither, Y. Homma, M. Sellke and M. D. Ward by using the method of M. Fuchs, H.-K. Hwang, and V. Zacharovas.
- Prove the conjectured central limit theorem.

Main goal of thesis

- Re-derive (and correcte) the results of J. Gaither, Y. Homma, M. Sellke and M. D. Ward by using the method of M. Fuchs, H.-K. Hwang, and V. Zacharovas.
- Prove the conjectured central limit theorem.
- Derive a bivariate central limit theorem of the number of internal nodes and the number of 2-protected nodes in random tries. This result contains the central limit theorem for PATRICIA tries.

Main goal of thesis

- Re-derive (and correcte) the results of J. Gaither, Y. Homma, M. Sellke and M. D. Ward by using the method of M. Fuchs, H.-K. Hwang, and V. Zacharovas.
- Prove the conjectured central limit theorem.
- Derive a bivariate central limit theorem of the number of internal nodes and the number of 2-protected nodes in random tries. This result contains the central limit theorem for PATRICIA tries.
- Derive asymptotic expansions for the number of 2-protected nodes in PATRICIA tries.

Additive shape parameters

- A general framework for obtaining asymptotic expansions of mean and variance of additive shape parameter in random tries with explicit expressions for periodic functions.

Additive shape parameters

- A general framework for obtaining asymptotic expansions of mean and variance of additive shape parameter in random tries with explicit expressions for periodic functions.

Additive shape parameters

- A general framework for obtaining asymptotic expansions of mean and variance of additive shape parameter in random tries with explicit expressions for periodic functions.

- By splitting the trie,

$$
X_{n} \stackrel{d}{=} X_{I_{n}}+X_{n-I_{n}}^{*}+T_{n} .
$$

Main steps of the analysis

- The first step is to take moments on both sides of the distributional recurrence for X_{n}. This gives

$$
a_{n}=\sum_{0 \leq k \leq n} \pi_{n, k}\left(a_{k}+a_{n-k}\right)+b_{n}
$$

for all moments, where b_{n} is a function of moments of lower order.

Main steps of the analysis

- The first step is to take moments on both sides of the distributional recurrence for X_{n}. This gives

$$
a_{n}=\sum_{0 \leq k \leq n} \pi_{n, k}\left(a_{k}+a_{n-k}\right)+b_{n}
$$

for all moments, where b_{n} is a function of moments of lower order.

- The second step is poissonization. Let

$$
\tilde{f}(z):=e^{-z} \sum_{n} a_{n} \frac{z^{n}}{n!}, \quad \tilde{g}(z):=e^{-z} \sum_{n} b_{n} \frac{z^{n}}{n!}
$$

Main steps of the analysis

- The first step is to take moments on both sides of the distributional recurrence for X_{n}. This gives

$$
a_{n}=\sum_{0 \leq k \leq n} \pi_{n, k}\left(a_{k}+a_{n-k}\right)+b_{n}
$$

for all moments, where b_{n} is a function of moments of lower order.

- The second step is poissonization. Let

$$
\tilde{f}(z):=e^{-z} \sum_{n} a_{n} \frac{z^{n}}{n!}, \quad \tilde{g}(z):=e^{-z} \sum_{n} b_{n} \frac{z^{n}}{n!}
$$

- We have

$$
\tilde{f}(z)=\tilde{f}(p z)+\tilde{f}(q z)+\tilde{g}(z)
$$

Main steps of the analysis

- The third step is doing Mellin transform on both sides. Therefore

$$
\mathscr{M}[\tilde{f}(z) ; s]:=\int_{0}^{\infty} \tilde{f}(z) z^{s-1} \mathrm{~d} z
$$

Main steps of the analysis

- The third step is doing Mellin transform on both sides. Therefore

$$
\mathscr{M}[\tilde{f}(z) ; s]:=\int_{0}^{\infty} \tilde{f}(z) z^{s-1} \mathrm{~d} z
$$

- We have

$$
\mathscr{M}[\tilde{f}(z) ; s]=\frac{\mathscr{M}[\tilde{g}(z) ; s]}{1-p^{-s}-q^{-s}}
$$

Main steps of the analysis

- The third step is doing Mellin transform on both sides. Therefore

$$
\mathscr{M}[\tilde{f}(z) ; s]:=\int_{0}^{\infty} \tilde{f}(z) z^{s-1} \mathrm{~d} z
$$

- We have

$$
\mathscr{M}[\tilde{f}(z) ; s]=\frac{\mathscr{M}[\tilde{g}(z) ; s]}{1-p^{-s}-q^{-s}}
$$

- The fourth step is using inverse Mellin transform

$$
\tilde{f}(z)=\frac{1}{2 \pi i} \int_{\uparrow} \frac{\mathscr{M}[\tilde{g}(z) ; s] z^{-s}}{1-p^{-s}-q^{-s}} d s
$$

and applying the converse mapping theorem.

Main steps of the analysis

- The last step is depoissonization which is based on the Poisson heuristic

$$
\tilde{f}(n)=\mathbb{E}\left(a_{N}\right) \sim a_{n} .
$$

Main steps of the analysis

- The last step is depoissonization which is based on the Poisson heuristic

$$
\tilde{f}(n)=\mathbb{E}\left(a_{N}\right) \sim a_{n}
$$

- To make this step precise, we use Cauchy's integral formula

$$
a_{n}=\frac{n!}{2 \pi i} \oint_{|z|=r} z^{-n-1} e^{z} \tilde{f}(z) d z
$$

and the saddle-point method.

Main steps of the analysis

- The last step is depoissonization which is based on the Poisson heuristic

$$
\tilde{f}(n)=\mathbb{E}\left(a_{N}\right) \sim a_{n}
$$

- To make this step precise, we use Cauchy's integral formula

$$
a_{n}=\frac{n!}{2 \pi i} \oint_{|z|=r} z^{-n-1} e^{z} \tilde{f}(z) d z
$$

and the saddle-point method.

- All the above steps can be merged via

$$
a_{n}=\frac{n!}{2 \pi i} \int_{\uparrow} \frac{\mathscr{M}[\tilde{g}(z) ; s]}{\left(1-p^{-s}-q^{-s}\right) \Gamma(n+1-s)} d s
$$

Poisson-Mellin-Newton cycle

$$
\begin{aligned}
& \qquad a_{n} \\
& \text { Recurrence relation } \\
& a_{n}=\sum_{0 \leq k \leq n} \pi_{n, k}\left(a_{k}+a_{n-k}\right)+b_{n}
\end{aligned}
$$

Poisson generating function

$$
\tilde{f}(z)=\tilde{f}(p z)+\tilde{f}(q z)+\tilde{g}(z)
$$

Mellin transform

$$
\mathscr{M}[\tilde{f}(z) ; s]=\frac{\mathscr{M}[\tilde{g}(z) ; s]}{1-p^{-s}-q^{-s}}
$$

Inverse Mellin transform

$$
\tilde{f}(z)=\frac{1}{2 \pi i} \int_{\uparrow} \frac{\mathscr{M}[\tilde{g}(z) ; s] z^{-s}}{1-p^{-s}-q^{-s}} d s
$$

Analytic de-Poissonization

$$
a_{n}=\frac{n!}{2 \pi i} \oint_{|z|=r} z^{-n-1} e^{z} \tilde{f}(z) d z
$$

Variance

- The definition of the variance is

$$
\mathbb{V}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)-\left(\mathbb{E}\left(X_{n}\right)\right)^{2}
$$

Variance

- The definition of the variance is

$$
\mathbb{V}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)-\left(\mathbb{E}\left(X_{n}\right)\right)^{2}
$$

- P. Jacquet and M. Regnier used the following

$$
\tilde{W}(z):=\tilde{f}_{2}(z)-\tilde{f}_{1}(z)^{2}
$$

Variance

- The definition of the variance is

$$
\mathbb{V}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)-\left(\mathbb{E}\left(X_{n}\right)\right)^{2}
$$

- P. Jacquet and M. Regnier used the following

$$
\tilde{W}(z):=\tilde{f}_{2}(z)-\tilde{f}_{1}(z)^{2}
$$

- M. Fuchs, H.-K. Hwang and V. Zacharovas pointed out that a better choice is

$$
\tilde{V}(z):=\tilde{f}_{2}(z)-\tilde{f}_{1}(z)^{2}-z \tilde{f}_{1}(z)^{2}
$$

We will make use of this in our analysis of 2-protected nodes in tries and PATRICIA tries.

2-protected nodes in tries

- Recall: X_{n} can be described by

$$
X_{n} \stackrel{d}{=} X_{I_{n}}+X_{n-I_{n}}^{*}+T_{n}
$$

2-protected nodes in tries

- Recall: X_{n} can be described by

$$
X_{n} \stackrel{d}{=} X_{I_{n}}+X_{n-I_{n}}^{*}+T_{n}
$$

- By splitting the trie,

$$
X_{n}^{(T)} \stackrel{d}{=} \begin{cases}X_{n-1}^{(T)}, & \text { when } I_{n}=1 \text { or } I_{n}=n-1 \\ X_{I_{n}}^{(T)}+X_{n-I_{n}}^{(T) *}+1, & \text { otherwise },\end{cases}
$$

with initial conditions $X_{0}^{(T)}=X_{1}^{(T)}=0$. So,

$$
T_{n}= \begin{cases}0, & \text { when } I_{n}=1 \text { or } I_{n}=n-1 \\ 1, & \text { otherwise }\end{cases}
$$

Mean of 2-protected nodes in tries

- With $\chi_{k}=\frac{2 r k \pi i}{\log p}$ and $\frac{\log p}{\log q}=\frac{r}{l}$ and $(r, l)=1$, let

$$
\mathscr{F}[G](x):= \begin{cases}\frac{1}{h} \sum_{k \in \mathbb{Z} \backslash\{0\}} G\left(-1+\chi_{k}\right) e^{2 k \pi i x}, & \text { if } \frac{\log p}{\log q} \in \mathbb{Q} ; \\ 0, & \text { if } \frac{\log p}{\log q} \notin \mathbb{Q},\end{cases}
$$

Mean of 2-protected nodes in tries

- With $\chi_{k}=\frac{2 r k \pi i}{\log p}$ and $\frac{\log p}{\log q}=\frac{r}{l}$ and $(r, l)=1$, let

$$
\mathscr{F}[G](x):= \begin{cases}\frac{1}{h} \sum_{k \in \mathbb{Z} \backslash\{0\}} G\left(-1+\chi_{k}\right) e^{2 k \pi i x}, & \text { if } \frac{\log p}{\log q} \in \mathbb{Q} ; \\ 0, & \text { if } \frac{\log p}{\log q} \notin \mathbb{Q},\end{cases}
$$

Theorem

We have

$$
\frac{\mathbb{E}\left(X_{n}^{(T)}\right)}{n}=\frac{p q+1-h}{h}+\mathscr{F}\left[G_{1}^{(T)}\right]\left(r \log _{1 / p} n\right)+o(1)
$$

where $G_{1}^{(T)}\left(-1+\chi_{k}\right)=\Gamma\left(-1+\chi_{k}\right) \chi_{k}\left(\chi_{k} p q-p q-1\right)$.

Variance of 2-protected nodes in tries

Theorem

We have

$$
\frac{\mathbb{V}\left(X_{n}^{(T)}\right)}{n}=\frac{G_{2}^{(T)}(-1)}{h}+\mathscr{F}\left[G_{2}^{(T)}\right]\left(r \log _{1 / p} n\right)+o(1)
$$

where $G_{2}^{(T)}\left(-1+\chi_{k}\right)$ is

$$
\begin{aligned}
& \Gamma\left(3+\chi_{k}\right)\left(-2^{-3-\chi_{k}} p^{2} q^{2}\right)+\Gamma\left(\chi_{k}+2\right)\left(2 p^{2} q(1+p)^{-2-\chi_{k}}+2 p q^{2}(1+q)^{-2-\chi_{k}}\right) \\
& +\Gamma\left(\chi_{k}+1\right)\left(-3 p q+2^{-\chi_{k}} p q-2^{-1-\chi_{k}}\right)+\Gamma\left(\chi_{k}\right)\left(1-2 p(1+p)^{-\chi_{k}}-2 q(1+q)^{-\chi_{k}}\right) \\
& +\Gamma\left(\chi_{k}-1\right)\left(1-2^{1-\chi_{k}}\right)-\frac{1}{h} \sum_{j \in \mathbb{Z}}\left(\chi_{j}-1\right) G_{1}^{(T)}\left(\chi_{j}-1\right)\left(-1+\chi_{k-j}\right) G_{1}^{(T)}\left(-1+\chi_{k-j}\right) \\
& +2 \sum_{\ell \geq 1} \frac{(-1)^{\ell}}{\ell!} \frac{p^{1+\ell}+q^{1+\ell}}{1-p^{1+\ell}-q^{1+\ell}} K_{1}\left(\ell+\chi_{k}-1\right) K_{1}(-1-\ell) \Gamma\left(\ell+\chi_{k}\right)
\end{aligned}
$$

Variance of 2-protected nodes in tries

Theorem (continued)

$$
\begin{aligned}
& +2 \sum_{\ell \geq 2} \frac{(-1)^{\ell}}{\ell!} \frac{K_{1}(-\ell)}{1-p^{\ell}-q^{\ell}}\left(p q\left(p^{\ell}+q^{\ell}\right)(\ell-1) \Gamma\left(\chi_{k}+\ell+1\right)+\left(1-\ell\left(p^{\ell}+q^{\ell}\right)\left(2 p q+p^{-\ell+2}\right.\right.\right. \\
& \left.\left.\left.+q^{-\ell+2}\right)\right) \Gamma\left(\chi_{k}+\ell\right)+\left(p^{\ell}+q^{\ell}\right)\left(1-\ell+p^{-\ell+2} \ell+q^{-\ell+2} \ell\right) \Gamma\left(\chi_{k}+\ell-1\right)\right)
\end{aligned}
$$

and $G_{2}^{(T)}(-1)$ is

$$
\begin{aligned}
& \frac{2 p^{2} q}{(1+p)^{2}}+\frac{2 p q^{2}}{(1+q)^{2}}-2 p q-\frac{p^{2} q^{2}}{4}+2 p \log (1+p)+2 q \log (1+q)+\frac{1}{2}+h-2 \log 2 \\
& +2 \sum_{\ell \geq 2}(-1)^{\ell} \frac{K_{1}(-\ell)}{1-p^{\ell}-q^{\ell}}\left((p ^ { \ell } + q ^ { \ell }) \left(\frac{1-\ell+p^{-\ell+2} \ell+q^{-\ell+2} \ell}{\ell(\ell-1)}+p q \ell-3 p q-p^{-\ell+2}\right.\right.
\end{aligned}
$$

Variance of 2-protected nodes in tries

Theorem (continued)

$$
\begin{aligned}
& \left.\left.-q^{-\ell+2}\right)+\frac{1}{\ell}\right)+2 \sum_{\ell \geq 1} \frac{(-1)^{\ell}}{\ell} \frac{p^{1+\ell}+q^{1+\ell}}{1-p^{1+\ell}-q^{1+\ell}} K_{1}(\ell-1) K_{1}(-1-\ell)-\frac{1}{h}(p q+1-h)^{2} \\
& - \\
& \begin{cases}\frac{1}{h \log p} \sum_{j \geq 1} \frac{4 r j \pi^{2}}{\sinh \left(\frac{2 r j \pi^{2}}{\log p}\right)}\left(p^{2} q^{2}\left(\frac{2 r j \pi}{\log p}\right)^{2}+(p q+1)^{2}\right), & \text { if } \frac{\log p}{\log q} \in \mathbb{Q} ; \\
0, & \text { if } \frac{\log p}{\log q} \notin \mathbb{Q} .\end{cases}
\end{aligned}
$$

Here, we set

$$
K_{1}(s):=-1+p q s(s+1)-p^{-s} s-q^{-s} s
$$

Variance of 2-protected nodes in tries

Theorem (continued)

$$
\left.\left.-q^{-\ell+2}\right)+\frac{1}{\ell}\right)+2 \sum_{\ell \geq 1} \frac{(-1)^{\ell}}{\ell} \frac{p^{1+\ell}+q^{1+\ell}}{1-p^{1+\ell}-q^{1+\ell}} K_{1}(\ell-1) K_{1}(-1-\ell)-\frac{1}{h}(p q+1-h)^{2}
$$

$$
- \begin{cases}\frac{1}{h \log p} \sum_{j \geq 1} \frac{4 r j \pi^{2}}{\sinh \left(\frac{2 r j \pi^{2}}{\log p}\right)}\left(p^{2} q^{2}\left(\frac{2 r j \pi}{\log p}\right)^{2}+(p q+1)^{2}\right), & \text { if } \frac{\log p}{\log q} \in \mathbb{Q} \\ 0, & \text { if } \frac{\log p}{\log q} \notin \mathbb{Q}\end{cases}
$$

Here, we set

$$
K_{1}(s):=-1+p q s(s+1)-p^{-s} s-q^{-s} s
$$

- Our expression is different from J. Gaither and M. D. Ward.

Variance of 2-protected nodes in tries

Theorem (continued)

$$
\begin{aligned}
& \left.\left.-q^{-\ell+2}\right)+\frac{1}{\ell}\right)+2 \sum_{\ell \geq 1} \frac{(-1)^{\ell}}{\ell} \frac{p^{1+\ell}+q^{1+\ell}}{1-p^{1+\ell}-q^{1+\ell}} K_{1}(\ell-1) K_{1}(-1-\ell)-\frac{1}{h}(p q+1-h)^{2} \\
& - \begin{cases}\frac{1}{h \log p} \sum_{j \geq 1} \frac{4 r j \pi^{2}}{\sinh \left(\frac{2 r j \pi^{2}}{\log p}\right)}\left(p^{2} q^{2}\left(\frac{2 r j \pi}{\log p}\right)^{2}+(p q+1)^{2}\right), & \text { if } \frac{\log p}{\log q} \in \mathbb{Q} ; \\
0, & \text { if } \frac{\log p}{\log q} \notin \mathbb{Q} .\end{cases}
\end{aligned}
$$

Here, we set

$$
K_{1}(s):=-1+p q s(s+1)-p^{-s} s-q^{-s} s
$$

- Our expression is different from J. Gaither and M. D. Ward.
- We give an explanation why Abel summability gives the correct result in the expression above.

$\mathbb{V}\left(X_{n}^{(T)}\right) / n$

Central limit theorem

Theorem (CLT)

We have,

$$
\frac{X_{n}^{(T)}-\mathbb{E}\left(X_{n}^{(T)}\right)}{\sqrt{\mathbb{V}\left(X_{n}^{(T)}\right)}} \xrightarrow{d} N(0,1),
$$

where \xrightarrow{d} denotes convergence in distribution and $N(0,1)$ is the standard normal distribution.

2-protected nodes in PATRICIA tries

- By splitting the PATRICIA trie,

$$
X_{n}^{(P)} \stackrel{d}{=} \begin{cases}X_{n}^{(P)}, & \text { when } I_{n}=0 \text { or } n ; \\ X_{n-1}^{(P)}, & \text { when } I_{n}=1 \text { or } n-1 \\ X_{I_{n}}^{(P)}+X_{n-I_{n}}^{(P) *}+1, & \text { otherwise },\end{cases}
$$

with initial conditions $X_{0}^{(P)}=X_{1}^{(P)}=0$. So,

$$
T_{n}= \begin{cases}0, & \text { if } I_{n} \in\{0,1, n-1, n\} \\ 1, & \text { otherwise }\end{cases}
$$

2-protected nodes in PATRICIA tries

- By splitting the PATRICIA trie,

$$
X_{n}^{(P)} \stackrel{d}{=} \begin{cases}X_{n}^{(P)}, & \text { when } I_{n}=0 \text { or } n ; \\ X_{n-1}^{(P)}, & \text { when } I_{n}=1 \text { or } n-1 ; \\ X_{I_{n}}^{(P)}+X_{n-I_{n}}^{(P) *}+, & \text { otherwise },\end{cases}
$$

with initial conditions $X_{0}^{(P)}=X_{1}^{(P)}=0$. So,

$$
T_{n}= \begin{cases}0, & \text { if } I_{n} \in\{0,1, n-1, n\} \\ 1, & \text { otherwise }\end{cases}
$$

- By the same analysis as for tries, we get the results of PATRICIA tries.

Mean of 2-protected nodes in PATRICIA tries

Mean of 2-protected nodes in PATRICIA tries

Theorem

We have

$$
\frac{\mathbb{E}\left(X_{n}^{(P)}\right)}{n}=\frac{p q}{h}+\mathscr{F}\left[G_{1}^{(P)}\right]\left(r \log _{1 / p} n\right)+o(1)
$$

where $G_{1}^{(P)}\left(-1+\chi_{k}\right)=p q \Gamma\left(\chi_{k}+1\right)$.

- Here, we have the following relationship between 2-protected nodes in tries and PATRICIA tries via the number of internal nodes:

$$
X_{n}^{(P)}=X_{n}^{(T)}-N_{n}+n-1 .
$$

Variance of 2-protected nodes in PATRICIA tries

Theorem

We have

$$
\frac{\mathbb{V}\left(X_{n}^{(P)}\right)}{n}=\frac{G_{2}^{(P)}(-1)}{h}+\mathscr{F}\left[G_{2}^{(P)}\right]\left(r \log _{1 / p} n\right)+o(1)
$$

where $G_{2}^{(P)}\left(-1+\chi_{k}\right)$ is

$$
\begin{aligned}
& \Gamma\left(3+\chi_{k}\right)\left(-2^{-3-\chi_{k}} p^{2} q^{2}\right)+\Gamma\left(\chi_{k}+2\right)\left(2 p^{2} q(1+p)^{-2-\chi_{k}}+2 p q^{2}(1+q)^{-2-\chi_{k}}-2^{-1-\chi_{k}} p q\right) \\
& +\Gamma\left(\chi_{k}+1\right)\left(-3 p q-2^{-1-\chi_{k}}\left(1+2 p q+p^{1-\chi_{k}}+q^{1-\chi_{k}}\right)+2 p(1+q)(1+p)^{-1-\chi_{k}}\right. \\
& \left.+2 q(1+p)(1+q)^{-1-\chi_{k}}\right)+\left(\Gamma\left(\chi_{k}\right)+\Gamma\left(\chi_{k}-1\right)\right)\left(2(1+p)^{1-\chi_{k}}+2(1+q)^{1-\chi_{k}}-2^{1-\chi_{k}}\right. \\
& \left.+\left(1-2^{1-\chi_{k}}\right)\left(p^{1-\chi_{k}}+q^{1-\chi_{k}}\right)-3\right)+2 \sum_{\ell \geq 2} \frac{(-1)^{\ell}}{\ell!} \frac{K_{1}(-\ell)}{1-p^{\ell}-q^{\ell}}\left(p q\left(p^{\ell}+q^{\ell}\right)(\ell-1)\right. \\
& \Gamma\left(\chi_{k}+\ell+1\right)+\left(\left(p^{\ell}+q^{\ell}\right)\left(\ell-2 p q \ell-p^{-\ell+2} \ell-q^{-\ell+2} \ell-1\right)+1\right) \Gamma\left(\chi_{k}+\ell\right)
\end{aligned}
$$

Variance of 2-protected nodes in PATRICIA tries

Theorem (continued)

$$
\begin{aligned}
& \left.+\left(1-p^{\ell}-q^{\ell}\right) \Gamma\left(\chi_{k}+\ell-1\right)\right)-\frac{1}{h} \sum_{j \in \mathbb{Z}}\left(\chi_{j}-1\right) G_{1}^{(P)}\left(\chi_{j}-1\right)\left(-1+\chi_{k-j}\right) G_{1}^{(P)}\left(-1+\chi_{k-j}\right) \\
& +2 \sum_{\ell \geq 1} \frac{(-1)^{\ell}}{\ell!} \frac{p^{1+\ell}+q^{1+\ell}}{1-p^{1+\ell}-q^{1+\ell}} K_{1}\left(\ell+\chi_{k}-1\right) K_{1}(-1-\ell) \Gamma\left(\ell+\chi_{k}\right),
\end{aligned}
$$

and $G_{2}^{(P)}(-1)$ is

$$
\begin{aligned}
& -\frac{p^{2} q^{2}}{4}-\frac{9 p q}{2}-1+\frac{2 p(1+q)}{1+p}+\frac{2 q(1+p)}{1+q}+\frac{2 p^{2} q}{(1+p)^{2}}+\frac{2 p q^{2}}{(1+q)^{2}} \\
& +2 \sum_{\ell \geq 2} \frac{(-1)^{\ell} K_{1}(-\ell)}{1-p^{\ell}-q^{\ell}}\left(\left(p^{\ell}+q^{\ell}\right)\left(1-p^{-\ell+2}-q^{-\ell+2}-\frac{1}{\ell-1}+p q \ell-3 p q\right)\right.
\end{aligned}
$$

Variance of 2-protected nodes in PATRICIA tries

Theorem (continued)

$$
\begin{aligned}
& \left.+\frac{1}{\ell-1}\right)+2 \sum_{\ell \geq 1} \frac{(-1)^{\ell}}{\ell} \frac{p^{1+\ell}+q^{1+\ell}}{1-p^{1+\ell}-q^{1+\ell}} K_{1}(\ell-1) K_{1}(-1-\ell)-\frac{p^{2} q^{2}}{h} \\
& - \begin{cases}\frac{1}{h \log p} \sum_{j \geq 1} \frac{4 r j \pi^{2}}{\sinh \left(\frac{2 r j \pi^{2}}{\log p}\right)}\left(p^{2} q^{2}\left(\frac{2 r j \pi}{\log p}\right)^{2}+p^{2} q^{2}\right), & \text { if } \frac{\log p}{\log q} \in \mathbb{Q} ; \\
0, & \text { if } \frac{\log p}{\log q} \notin \mathbb{Q} .\end{cases}
\end{aligned}
$$

Here, we set $K_{1}(s):=\left(p q s+1-p^{-s}-q^{-s}\right)(s+1)$.

Bivariate central limit theorem

Theorem
We have

$$
\frac{\operatorname{Cov}\left(N_{n}, X_{n}^{(T)}\right)}{n}=\frac{H_{2}(-1)}{h}+\mathscr{F}\left[H_{2}\right]\left(r \log _{1 / p} n\right)+o(1),
$$

where

$$
H_{2}(x)=\frac{G_{2}^{(T)}(x)+G_{2}^{(N)}(x)-G_{2}^{(P)}(x)}{2}
$$

Bivariate central limit theorem

Theorem
We have

$$
\frac{\operatorname{Cov}\left(N_{n}, X_{n}^{(T)}\right)}{n}=\frac{H_{2}(-1)}{h}+\mathscr{F}\left[H_{2}\right]\left(r \log _{1 / p} n\right)+o(1)
$$

where

$$
H_{2}(x)=\frac{G_{2}^{(T)}(x)+G_{2}^{(N)}(x)-G_{2}^{(P)}(x)}{2}
$$

Theorem
We have,

$$
\Sigma_{n}^{-1 / 2}\binom{N_{n}-\mathbb{E}\left(N_{n}\right)}{X_{n}^{(T)}-\mathbb{E}\left(X_{n}^{(T)}\right)} \xrightarrow{d} N\left(0, I_{2}\right),
$$

Number of 2-protected nodes in digital tree

Number of 2-protected nodes in digital tree

Thanks for your attention!

