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Sketch the problem

@ Original question: In how many ways can one list the
numbers 1,2, ..., n such that apart from the leading element
the number k can be placed only if either k — 1 or k+1
already appears?

2/1



Sketch the problem

@ Original question: In how many ways can one list the
numbers 1,2, ..., n such that apart from the leading element
the number k can be placed only if either k — 1 or k+1
already appears?

@ We are concerned with the bounded deviated permutation

I,r

within (£, r), denoted by S, ;.
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Sketch the problem

@ Original question: In how many ways can one list the
numbers 1,2, ..., n such that apart from the leading element
the number k can be placed only if either k — 1 or k+1
already appears?

We are concerned with the bounded deviated permutation

within (£, r), denoted by Si' .

We defined a random variable X, = k if m; = k + 1 for

l !
T =MWy Tyl € Snil on the Snil .

Conjecture: the random variable will converge to a Gaussian
distribution.
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Bounded Deviated Permutation

Definition

A permutation T = 17y - - Tpe1 € Spa1 is bounded deviated
within (/, r) if, for i > 2, the value k can be assigned to 7; only if
at least one of the values in (k — I, k + r) has appeared among

M1, T, -+ ,Mi—1, OF equivalently,
min{my,m0, - ,mi_1} — I < <max{my, mo, -, W1} +r
for all i > 2.

@ For example, 3425716 is bounded deviated within (1,2), but
4523617 is not.
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Bounded Deviated Permutation

Definition

A permutation T = 17y - - Tpe1 € Spa1 is bounded deviated
within (/, r) if, for i > 2, the value k can be assigned to 7; only if
at least one of the values in (k — I, k + r) has appeared among

M1, T, -+ ,Mi—1, OF equivalently,
min{my,m0, - ,mi_1} — I < <max{my, mo, -, W1} +r
for all i > 2.

@ For example, 3425716 is bounded deviated within (1,2), but
4523617 is not.

e Notation: 5,/73rr1 be the set of (/, r)-bounded deviated
permutations.
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Bounded Deviated Permutation

Definition

Let m =mymp -+ Tpt1 € Spp1. The upward subsequence (resp.
downward subsequence) of 7 is the subsequence 7w (resp. 7~) of
7 which consists of all numbers that are larger (resp. smaller) than

1.

@ Define the reduced word of 7" to be the word red(7™)
obtained by substracting w1 from each number of 7+, whereas
the reduced word of 7~ to be the word red(7~) obtained by
substracting each number from 7.
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Bounded Deviated Permutation

Definition

Let m =mymp -+ Tpt1 € Spp1. The upward subsequence (resp.
downward subsequence) of 7 is the subsequence 7w (resp. 7~) of
7 which consists of all numbers that are larger (resp. smaller) than

1.

@ Define the reduced word of 7" to be the word red(7™)
obtained by substracting w1 from each number of 7+, whereas
the reduced word of 7~ to be the word red(7~) obtained by
substracting each number from 7.

o For example, let m = 3425716 € S7, then 7+ = 4576,
red(nt) = 1243, 7= = 21, and red(7~) = 12.
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Bounded Deviated Permutation

Definition

For r,k € N, a plus-r word in S,.1 is a permutation

T =17y Tp+1 € Spy1 such that 73 < r, and

mi < max{my,mp, -+ ,mi—1} + r forall i > 1. The set of all such
words is denoted by 37, ;. The collection of all plus-r words
regardless of their lengths is denoted 8" = U2 (5.

o Let/,r,neN. Then7r€5Jrl if and only if
(red( )7 red( )) € ﬁﬁl—l X Bn—l—l—ﬁl'
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Bounded Deviated Permutation

Definition

For r,k € N, a plus-r word in S,.1 is a permutation

T =17y Tp+1 € Spy1 such that 73 < r, and

mi < max{my,mp, -+ ,mi—1} + r forall i > 1. The set of all such
words is denoted by 37, ;. The collection of all plus-r words
regardless of their lengths is denoted 8" = U2 (5.

g

o Let ,r,neN. Thenw € SII,Jrl if and only if
(red(n™), red(n %)) € BL, 1 X Bhi1_p,-

o For example, 7 = 3425716 € S)*% if and only if
(red(n~), red(nt)) = (12,1243) € B | x 32 5.
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Bounded Deviated Permutation

Theorem (Eu-Lin-Lo,2014)

There ia a bijection between the set 3, of plus-r words in S, 1
and permutations in Sp11 that have only cycles of length at most r.

A bounded deviated permutation within (I, r) can be decomposed
into a pair of two sequences, such that the first of which has cycle
length bounded by | and the other bounded by r .

I,r
SnJrl

ZQ ) JBi]- 8l

is

@ The enumeration of

I,r
5n+1
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Bounded Deviated Permutation

@ The EGF of the numbers of permutations, all of whose cycles
have lengths at most r is known to be

2 r
5,(2):exp(z+z2+~--+zr>,

hence it is also the EGF for |37, .
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Bounded Deviated Permutation

@ The EGF of the numbers of permutations, all of whose cycles
have lengths at most r is known to be

2 r
5,(2):exp<z+z2+~--+zr>,

hence it is also the EGF for |37, .

The EGF of ST, | is
n+1
S(z) = D|se| 5
n>0
22 ZI 22 r
= exp<z+2+~--+l)exp(z+2+ +)
= 51(2)-5(2)




Random Variable

@ Assume the permutation S,Iq’frl are uniformly distributed.
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Random Variable

I,r
n+1

@ Define the random variable X, on the set of all (/, r)-bounded
deviated permutations S,/,’j_l by X, = kif my = k+1 for

I,r
T=mme Tl € S0

@ Assume the permutation S’/ ; are uniformly distributed.
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Random Variable

@ Assume the permutation S,Iq’frl are uniformly distributed.
@ Define the random variable X, on the set of all (/, r)-bounded
deviated permutations S,/,’j_l by X, = kif my = k+1 for
I,r
T=mme Tl € S0
_ ‘{WESL’_;l\lek—i—l H
A

@ The probability function: P (X,)

n+1
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Random Variable

@ Set

I

/\n,k = ){WG S,I,’_ir_l ‘71’1 = k—l—l}

then
Ank = <Z) akbpt1—k, 0< k<n,

where (a,) and (b,) are the counting sequences for 5{ B,
respectively.
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Random Variable

e Define a bivariate generating function (BGF)

A(z,u) = ZZ)\nku ,T ZZ( )akb” Kt %T

n=0 k=0 ’ n=0 k=0

- Y Y

n=0 j+j=n
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Random Variable

e Define a bivariate generating function (BGF)

A(z,u) = ZZ)\nku ,T ZZ( )akb” Kt %T

n=0 k=0 ’ n=0 k=0

- Y Y

n=0 j+j=n

_ (
= exp((zu)+ 5 + et |

z2 z"
.exp(z++...+>’
2 r

@ When u =1, we get

A(z,1) =
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Random Variable

@ The mean value and variance can be computed as

_ [25Az, u)lum

SN FOVIERD
and
o (212 Az, u) i1 LAz, 0)]u=r
! [2"]A(z,1) [2"]A(z,1)

(215 Az 0
1Az )
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Generalized Quasi-powers Theorem

Theorem (Generalized Quasi-powers Theorem)

Assume that, for u in a fixed neighbourhood ) of 1, the generating
function p,(u) of a non-negative discrete random variable
(supported by Z>q) X, admits a representation of the form

pn(u) = exp (hy (1)) (1 + 0 (1)),

uniformly with respect to u, where each h, (u) is analytic in Q.
Assume also the conditions,

hy' (u)

H, (1) + A (1) — 0o and 5
(h (1) + A7 (1))2

— 0,

uniformly for u € Q. (to be continued...)
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Generalized Quasi-powers Theorem

(be continued)
Then, the random variable

Xn - hir (1)
(H, (1) + ! (1))2

X =

converges in distribution to a Gaussian with mean 0 and variance 1.

v

@ Note that
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Generalized Quasi-powers Theorem

e Considering the exact form p,(u) = exp (h, (u)), we have

Ph(u) = H,(u)exp (hn(u)),

Pa(u) = Ky (u)exp (hn (1)) + (K, (u)® exp (hn (),

Pyu) = Y (u)exp (hn (u)) + 3h, () Ky () exp (n (u))
+ (p () exp (hn (u)) -
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Generalized Quasi-powers Theorem

e Considering the exact form p,(u) = exp (h, (u)), we have

Ph(u) = H,(u)exp (hn(u)),

Pa(u) = Ky (u)exp (hn (1)) + (K, (u)® exp (hn (),

Pyu) = Y (u)exp (hn (u)) + 3h, () Ky () exp (n (u))
+ (p () exp (hn (u)) -

@ Hence

/ " / 2
(1) + K (1) = /;n (1) i Py (1) _ </;n (1)>

and

" Py (1) pn(1)p,(1) ph (1)
=00 3( (pa(1))’ )”(pn(l)) '
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(I,r)=(1,2)

o First we set the BGF of the bounded deviated permutation
12 .
S
2

A(z,u) = exp((1 + v)z + %),
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(.r)=(1.2)

o First we set the BGF of the bounded deviated permutation
12 .
S
2

A(z,u) = exp((1 + v)z + %),

@ The expected value i, can be computed as
L EIEAC e
! [z"]A(z,1)
[z"]z exp(2z + 22—2)
[z7] exp(2z + &)
_ 22
[z"~ 1] exp(2z + %)
[z7] exp(2z + )
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Main theorem

@ We can compute the asyn;ptotic formula for the coefficients
of the formula exp(2z + %-).

Theorem (Hayman formula)

Let f(z) =) a,z" be an admissible function. Let r, be the
positive real root of the equation a(r,) = n, foreachn=1,2,---

where a (r,) is given by a(r) = r%. Then

ap ~ —————asn— oo,

where b(r,) is given by b(r)

I

By
~
—~

~
~—
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Main theorem

@ We can compute the asyn;ptotic formula for the coefficients
of the formula exp(2z + %-).

@ But A\, = (Z)akb,,_k has no close form, we calculate its
asymptotic, and we use the following theorem:

Theorem (Hayman formula)

Let f(z) =) a,z" be an admissible function. Let r, be the
positive real root of the equation a(r,) = n, foreachn=1,2,---

where a (r,) is given by a(r) = r%. Then

ap~Y ——F——— as n — oQ,

where b (r,) is given by b (r)

I

By
~
—~

~
~—

16/ 1



Hayman formula

o Let

2
f(z) =exp (22+ 2) ,
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Hayman formula

o Let
2
f(z) =exp (22+ 2) ,

@ then we have

f'(z) =2+ z)exp <22—|— 222> :
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Hayman formula

o Let
2
f(z) =exp (22+ 2) ,

@ then we have

f'(z) =2+ z)exp <22—|— 222> :

@ and
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Hayman formula

@ Now we solve the equation

2
2+ =n
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Hayman formula

@ Now we solve the equation
2 _
2+ =n

o We get
1
rn = —14+V1+n=-1+/m/14+=
n
1 1
IO S R

2n  8n2
1 1
= vn—-1+

2yn  gn2
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Hayman formula

@ Hence



Hayman formula

@ Note that
a(r)=2+2r.
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Hayman formula

@ Note that
a(r)=2+2r.
e Also
b(r)=ra (r) =2r +2r°
hence

b(ry) = 2r, 4 2r2 ~2r2 ~2n (n — c0).
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Hayman formula

@ Note that
a(r)=2+2r.
e Also
b(r)=ra (r) =2r +2r°
hence

b(r,,):2r,,—i—2r3 ~2r§ ~2n (n— 00).
@ In the meantime,
r? n
f(rm) = exp|2m+ = :exp<—+r,,>
2 2
1 1
= exp(g)exp<ﬁ—1+—+-..>
n -1
~ eXP<§+ﬁ—1+O(nT>>
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(I,r)=(1,2)

e Finally, by Hayman formula,
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(.r)=(1.2)

e Finally, by Hayman formula,

f(rn)
riy/2mb ()
_ <E>§ exp (2\/5— 1)
B n Vanm

@ To get accuratly, by computer, the asymptotic formula for the
. 2
coefficients of the formula exp(2z + %-) can be computed :

dn o~

(1 + O(n—%))

2 L e2v/n—1
2 exp(2z + 2y~ ()EE (14 2

> O Ko 6/n o(n™1))

21 /1



(,r=(1,2)

@ So we have the expected value

n— 2
[Z 1] eXp(2z + 7)

Hn = [zn]exp(2z+§) :ﬁ_1+0<n7)’
and
o2 = [z”]aaTzzA(z, u)|u=t %A(z, Do
n [Z”]A(Z, 1) [zn]A(Z7 1)

(212 A, )]s 2
[Z"]A(Z’ ]_)

_ [Z"—2] eXp(2z + Z2i) ) 2

= [z"] exp(2z + %2) + 1, — (1)

B ﬁ_;+o(n%)
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(.r)=(1.2)

@ Here, we check the desired form of the quasi-power theorem.
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(.r)=(1.2)

@ Here, we check the desired form of the quasi-power theorem.

@ In this case,
iy (1) ~ g,

and
R (1) + A (1) ~ 02 — o0 as n — oo.

By Cauchy coefficient integral, we will have
W (u)
(Hy (1) + H (1))

— 0 as n — oo,
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Theorem

On 5,};31, the leading statistics
Xp=m — 1

has the mean ji, ~ /n — 1 and the variance 02 ~ \/n —
admits a limit Gaussian law.

%, and it
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e figure 1: (,r) = (1,2), n = 10000, centered at its peak.

0.04 -
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(I.r)=(13)

@ We set the BGF of the bounded deviated permutation szl :
2 3

Az, u) = exp((1 + u)z + % n %).
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(1.)=(1.3)

@ We set the BGF of the bounded deviated permutation szl :

2 23

Az u) = exp((L +u)z + = + ).

@ The expected value p, can be computed as
[Zn]%A(Z, Wlu=1  [2"zexp(2z + 22—2 + %3)
no= Az, 1) [z exp(2z + & + %3)
[z exp(2z + 5 + )
[z"] exp(2z + z2j I Z373) .
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Hayman formula

o Let

22 78
f(z) = o,y L L
(2) exp<z+2+3>,
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Hayman formula

o Let

Z2 Z3
F(z) = o, 5 L4
(2) exp<2+2+3>,
@ then

/ _ 2 i i
f'(z)=2+z+2")exp |22+ >t 3 )
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Hayman formula

o Let ) 3
z¢  z
fF(z) = oy L
@ =ew(22+5+5).
@ then
/ 2 z? z?
f =(2 224+ —+ —
(z) (+z+z)exp<z+2+3),
@ and p
a(r):rf((rr)) =2r4r* +r.
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Hayman formula

@ Here we solve the equation

2
2rp4+r2+r¥=n
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Hayman formula

@ Here we solve the equation
2rp4+r2+r¥=n

@ Now we face a problem : solve the equation a(r,) = n.
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Hayman formula

@ Here we solve the equation
2rp4+r2+r¥=n

@ Now we face a problem : solve the equation a(r,) = n.

@ It always in the form Gzl + Gz? + -+ Cz¥ = n, but we
have no formula to solve it.
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Hayman formula

@ Here we solve the equation
2rp4+r2+r¥=n
@ Now we face a problem : solve the equation a(r,) = n.
o It always in the form Ciz! + Gz° + -+ - 4+ Cez¥ = n, but we

have no formula to solve it.

@ So we transform the equation to the specific form u = t® (u),
by proper substitution.
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Hayman formula

@ Here we solve the equation
2rp4+r2+r¥=n
@ Now we face a problem : solve the equation a(r,) = n.
o It always in the form Ciz! + Gz° + -+ - 4+ Cez¥ = n, but we

have no formula to solve it.

@ So we transform the equation to the specific form u = t® (u),
by proper substitution.

By the Lagrange inversion formula, we will get the positive
solution r,.(may be asymptotic)
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Solve Equation

o Let
u= (rn)_l )
then
ul+u?4+u3=n
implies

20 +u+1=1dn.
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Solve Equation

@ Thus

Wik
Il

<

S
@l

(2u2 +u-+ 1) ().
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Solve Equation

@ Thus

Wik
Il

<

S
@l

(2u2 +u-+ 1) ().

o Let
-1

t=n3,0(u) = (2u2+u+1) :

[N
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Solve Equation

@ Thus .
= 1
(2v® + u+1)° = un3 ().
o Let )
—1 s
t=n3,0(u) = (2u2+u+1)3.
@ Note that

®(0) =1
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Solve Equation

@ Thus .
= 1
(2v® + u+1)° = un3 ().
o Let )
—1 s
t=n3,0(u) = (2u2+u+1)3.
@ Note that

®(0) =1

@ (%) becomes

u(t) =td(u(t)).
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Solve Equation

@ Thus .
= 1
(2v® + u+1)° = un3 ().
o Let )
—1 s
t=n3,0(u) = (2u2+u+1)3.
@ Note that

®(0) =1

@ (%) becomes
u(t) =td(u(t)).

@ Now we can applied the Lagrange inversion formula

#lu(t) = [ @ @) (121)
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Lagrange Inversion Formula

o Compute
L t 5t
d(t) = (2 +t+1)3:1+§+?+
2 t  11¢
P (t) = (2P +t+1)° = L+5+55
3
O (t) = (22 +t+1)° =1+t+2f
4 4t 26t% 68t
ot (t) = (P +t+1)3 =1+ —
(1) (2t° +t+1) +t3+ 5+
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Lagrange Inversion Formula

o Compute
1 t 5t2
d(t) = (2 +t+1)3:1+§+?+
2 t 11t
P (t) = (2P +t+1)° = L+5+55
3
O (t) = (22 +t+1)° =1+t+2f
4 4t 26t>2 68t
PH(t) = (2 +t+1) =14 —+"— + —
(1) (2t° +t+1) +t3+ 5+
@ Hence
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Lagrange Inversion Formula

o Finally, we get

rn = u
1
. t 2t2 1748
= t M1+ -4+
( T3t T
. t 5t2 16t3
= t - - = -
3 9 81
., 1 5t 16t
= t - 4
39 81
1 5 - 16 -
= n%—§—§71—|—8—1n72+0(n_1)
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(I.r)=(13)

@ By computer, the asymptotic formula for the coefficients of
2 3
the formula exp(2z + % + %) can be computed:

2 3
(2" ep(2z + 5 + )
f ()
rh\/2mb ()
e e%”%+%”%_% 95
~ (2)5 1- r+0(n™h)
n onm 324n3
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(I.r)=(13)

@ Thus
2" exp(2z + 2 + 2 1 =
Mn:[ ] p( 222 233):n§—3++0<n31>.
[z"]exp(2z + 5 + %)
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(l)=(L3)

@ Thus
7" 1 ex 22+i+i 1 =
Mn:[ Jexp( 222 233):né—++0<n31>.
[z"] exp(2z + 5+ 7) 3
e And

[ 2 Az, u)u=1 | 2 A(z,0)]ur
" 27]A(z, 1) 27]A(z, 1)

(212Az 0 )
[2"TA(z.1)
_ ewlz+ 5+ %) + iy — (1)

[z"] exp(2z + 22—2 + %3)

— n%—%—l——{—O(n_Tl).

N
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(I.r)=(13)

@ Similarly, we check the desired form of the quasi-power
theorem.
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(I.r)=(13)

@ Similarly, we check the desired form of the quasi-power
theorem.

@ In this case,
h (1) ~ B,
and
h (1) 4+ A (1) ~ 0% — 00 as n — oo.

By Cauchy coefficient integral, we will have
Wy (u)
(Hy (1) + H (1)?

— 0 as n — oo,
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Theorem

On S*3 r1,the leading statistics
Xp=m — 1

has the mean p,, ~ /n — % and the variance o2 ~ /n — %, and it

admits a limit Gaussian law.

37
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e figure 2 : (,r) = (1,3), n = 10000, centered at its peak.

0.08 -

0.06 -

0.04

0.02 -
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(.r)=(2.2)

22

@ We set the BGF of the bounded deviated permutation S, :

Az, u) = exp <(1 +u)z+ (1+ %) Z;) .
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(.r)=(2.2)

2,2,

@ We set the BGF of the bounded deviated permutation S, :

Az, u) = exp <(1 +u)z+ (1+ %) Z;) .

@ The expected value u, can be computed as

o EIRAG
! [2"]A(z, 1)
[2"] (z + 2°) exp(2z + 22)
[z"] exp(2z + Zz2)
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(.r)=(2.2)

@ The asymptotic formula for the coefficients of the formula
exp(2z + z%) can also be computed by computer :

[2"] exp(2z+2°%) ~ (2:) ’ M (1 + El\fﬁ + O(n_1)>

dnm
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(.r)=(2.2)

@ The asymptotic formula for the coefficients of the formula
exp(2z + z%) can also be computed by computer :

7 exp (m — %) (1 + v2 + O(n_1)>

dnm

[2"] exp(2z+2°%) ~ (2:) NG
@ Thus
2" (z+ 2%) exp(2z + 2%)
Hn = [z"] exp(2z + 2?)
[z" Y exp(2z + 22) + [2" 2] exp(2z + 2?)
[z"] exp(2z + z2)

1 _
~ En—l—O(n 1).
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e And

(2] 2 Az, u) o1 LAz, 0)]um

[27]A(z,1) [27]A(2,1)
2
([ [Z15Az 0)|u=
[2"1A(z,1)
[z"~* exp(2z + 2?) . [27~3] exp(2z + 2?)
[z"] exp(2z + 2?) [z"] exp(2z + 2?)

2[z”_2] exp(2z + 2?)
[z"] exp(2z + z2)
1 V2n

2
+ Hn — (Mn)
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(.r)=(2.2)

@ In this case,
hz (1) ~ fp,

and
h (1) + A (1) ~ 0% — 00 as n — oo.

Similarly,by Cauchy coefficient integral, we will have
hy' (u)
() (1) + by (1))2

— 0 as n — oo.
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Theorem

On 53f1,the leading statistics

Xp=m — 1
has the mean 11, ~ 4 and the variance o2 ~ %n —
admits a limit Gaussian law.

B
3

, and it
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e figure 3: (,r) = (2,2), n = 10000, centered at its peak.
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400
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Conclusion and Further Discussion

. 2,3
@ General cases, such like 5n;rl.
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Conclusion and Further Discussion

. 2,3
@ General cases, such like 5n;rl.

@ The distribution of the second statistics, the third statistics,
etc.
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Thank you for your attention!!



