On the Distribution of the Leading Statistics for the Bounded Deviated Permutations

Wei-Liang Chien
Advisor: Yen-Chi R. Lin

August 2, 2014

Sketch the problem

- Original question: In how many ways can one list the numbers $1,2, \ldots, n$ such that apart from the leading element the number k can be placed only if either $k-1$ or $k+1$ already appears?
- We are concerned with the bounded deviated permutation within (ℓ, r), denoted by $S_{n+1}^{1, r}$
- We defined a random variable $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2}$ $\pi_{n+1} \in S_{n+1}^{\ell, r}$ on the $S_{n+1}^{l, r}$
- Conjecture: the random variable will converge to a Gaussian distribution.

Sketch the problem

- Original question: In how many ways can one list the numbers $1,2, \ldots, n$ such that apart from the leading element the number k can be placed only if either $k-1$ or $k+1$ already appears?
- We are concerned with the bounded deviated permutation within (ℓ, r), denoted by $S_{n+1}^{1, r}$.
- We defined a random variable $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2}$
$\pi_{n+1} \in S_{n+1}$ on the S_{n+1}
- Conjecture: the random variable will converge to a Gaussian distribution.

Sketch the problem

- Original question: In how many ways can one list the numbers $1,2, \ldots, n$ such that apart from the leading element the number k can be placed only if either $k-1$ or $k+1$ already appears?
- We are concerned with the bounded deviated permutation within (ℓ, r), denoted by $S_{n+1}^{1, r}$.
- We defined a random variable $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}^{\ell, r}$ on the $S_{n+1}^{l, r}$.
- Conjecture: the random variable will converge to a Gaussian distribution.

Sketch the problem

- Original question: In how many ways can one list the numbers $1,2, \ldots, n$ such that apart from the leading element the number k can be placed only if either $k-1$ or $k+1$ already appears?
- We are concerned with the bounded deviated permutation within (ℓ, r), denoted by $S_{n+1}^{l, r}$.
- We defined a random variable $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}^{\ell, r}$ on the $S_{n+1}^{l, r}$.
- Conjecture: the random variable will converge to a Gaussian distribution.

Bounded Deviated Permutation

Definition

A permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}$ is bounded deviated within (I, r) if, for $i \geq 2$, the value k can be assigned to π_{i} only if at least one of the values in $(k-I, k+r)$ has appeared among $\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}$, or equivalently,

$$
\min \left\{\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}\right\}-I \leq \pi_{i} \leq \max \left\{\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}\right\}+r
$$

for all $i \geq 2$.

- For example, 3425716 is bounded deviated within $(1,2)$, but 4523617 is not.
- Notation: $S_{n+1}^{1, r}$ be the set of $(1, r)$-bounded deviated permutations.

Bounded Deviated Permutation

Definition

A permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}$ is bounded deviated within (I, r) if, for $i \geq 2$, the value k can be assigned to π_{i} only if at least one of the values in $(k-I, k+r)$ has appeared among $\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}$, or equivalently,

$$
\min \left\{\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}\right\}-I \leq \pi_{i} \leq \max \left\{\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}\right\}+r
$$

for all $i \geq 2$.

- For example, 3425716 is bounded deviated within $(1,2)$, but 4523617 is not.
- Notation: $S_{n+1}^{l, r}$ be the set of (I, r)-bounded deviated permutations.

Bounded Deviated Permutation

Definition

Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}$. The upward subsequence (resp. downward subsequence) of π is the subsequence π^{+}(resp. π^{-}) of π which consists of all numbers that are larger (resp. smaller) than π_{1}.

- Define the reduced word of π^{+}to be the word red $\left(\pi^{+}\right)$ obtained by substracting π_{1} from each number of π^{+}, whereas the reduced word of π^{-}to be the word red $\left(\pi^{-}\right)$obtained by substracting each number from π_{1}.

Bounded Deviated Permutation

Definition

Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}$. The upward subsequence (resp. downward subsequence) of π is the subsequence π^{+}(resp. π^{-}) of π which consists of all numbers that are larger (resp. smaller) than π_{1}.

- Define the reduced word of π^{+}to be the word $\operatorname{red}\left(\pi^{+}\right)$ obtained by substracting π_{1} from each number of π^{+}, whereas the reduced word of π^{-}to be the word $\operatorname{red}\left(\pi^{-}\right)$obtained by substracting each number from π_{1}.
- For example, let $\pi=3425716 \in S_{7}$, then $\pi^{+}=4576$, $\operatorname{red}\left(\pi^{+}\right)=1243, \pi^{-}=21$, and $\operatorname{red}\left(\pi^{-}\right)=12$.

Bounded Deviated Permutation

Definition

For $r, k \in \mathbb{N}$, a plus-r word in S_{n+1} is a permutation
$\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}$ such that $\pi_{1} \leq r$, and $\pi_{i} \leq \max \left\{\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}\right\}+r$ for all $i \geq 1$. The set of all such words is denoted by β_{n+1}^{r}. The collection of all plus-r words regardless of their lengths is denoted $\beta^{r}=\cup_{k=0}^{\infty} \beta_{k}^{r}$.

- Let $I, r, n \in \mathbb{N}$. Then $\pi \in S_{n+1}^{I, r}$ if and only if

$$
\left(\operatorname{red}\left(\pi^{-}\right), \operatorname{red}\left(\pi^{+}\right)\right) \in \beta_{\pi_{1}-1}^{\prime} \times \beta_{n+1-\pi_{1}}^{r} .
$$

- For example, $\pi=3425716 \in S_{7}^{1,2}$ if and only if

Bounded Deviated Permutation

Definition

For $r, k \in \mathbb{N}$, a plus-r word in S_{n+1} is a permutation
$\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}$ such that $\pi_{1} \leq r$, and
$\pi_{i} \leq \max \left\{\pi_{1}, \pi_{2}, \cdots, \pi_{i-1}\right\}+r$ for all $i \geq 1$. The set of all such words is denoted by β_{n+1}^{r}. The collection of all plus-r words regardless of their lengths is denoted $\beta^{r}=\cup_{k=0}^{\infty} \beta_{k}^{r}$.

- Let $I, r, n \in \mathbb{N}$. Then $\pi \in S_{n+1}^{I, r}$ if and only if

$$
\left(\operatorname{red}\left(\pi^{-}\right), \operatorname{red}\left(\pi^{+}\right)\right) \in \beta_{\pi_{1}-1}^{\prime} \times \beta_{n+1-\pi_{1}}^{r} .
$$

- For example, $\pi=3425716 \in S_{7}^{1,2}$ if and only if $\left(\operatorname{red}\left(\pi^{-}\right), \operatorname{red}\left(\pi^{+}\right)\right)=(12,1243) \in \beta_{3-1}^{1} \times \beta_{7-3}^{2}$.

Bounded Deviated Permutation

Theorem (Eu-Lin-Lo,2014)

There ia a bijection between the set β_{n+1}^{r} of plus-r words in S_{n+1} and permutations in S_{n+1} that have only cycles of length at most r.

Corollary

A bounded deviated permutation within (I, r) can be decomposed into a pair of two sequences, such that the first of which has cycle length bounded by I and the other bounded by r.

- The enumeration of $\left|S_{n+1}^{1, r}\right|$ is

$$
\left|S_{n+1}^{\prime, r}\right|=\sum_{j=1}^{n+1}\binom{n}{j-1} \cdot\left|\beta_{j}^{\prime}\right| \cdot\left|\beta_{n+1-j}^{r}\right| .
$$

Bounded Deviated Permutation

- The EGF of the numbers of permutations, all of whose cycles have lengths at most r is known to be

$$
S_{r}(z)=\exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{r}}{r}\right)
$$

hence it is also the EGF for $\left|\beta_{n+1}^{r}\right|$.

Theorem

The EGF of $\left|S_{n+1}^{1, r}\right|$ is

$$
=S_{l}(z) \cdot S_{r}(z)
$$

Bounded Deviated Permutation

- The EGF of the numbers of permutations, all of whose cycles have lengths at most r is known to be

$$
S_{r}(z)=\exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{r}}{r}\right)
$$

hence it is also the EGF for $\left|\beta_{n+1}^{r}\right|$.

Theorem

The EGF of $\left|S_{n+1}^{I, r}\right|$ is

$$
\begin{aligned}
S^{\prime, r}(z) & =\sum_{n \geq 0}\left|S_{n+1}^{\prime, r}\right| \frac{z^{n+1}}{n!} \\
& =\exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{\prime}}{l}\right) \exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{r}}{r}\right) \\
& =S_{l}(z) \cdot S_{r}(z)
\end{aligned}
$$

Random Variable

- Assume the permutation $S_{n+1}^{I, r}$ are uniformly distributed.
- Define the random variable X_{n} on the set of all (I, r)-bounded deviated permutations $S_{n+1}^{1, r}$ by $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}^{l, r}$
- The probability function:

Random Variable

- Assume the permutation $S_{n+1}^{I, r}$ are uniformly distributed.
- Define the random variable X_{n} on the set of all (I, r)-bounded deviated permutations $S_{n+1}^{1, r}$ by $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}^{l, r}$.

Random Variable

- Assume the permutation $S_{n+1}^{I, r}$ are uniformly distributed.
- Define the random variable X_{n} on the set of all (I, r)-bounded deviated permutations $S_{n+1}^{1, r}$ by $X_{n}=k$ if $\pi_{1}=k+1$ for $\pi=\pi_{1} \pi_{2} \cdots \pi_{n+1} \in S_{n+1}^{l, r}$.
- The probability function: $P\left(X_{n}\right)=\frac{\left|\left\{\pi \in S_{n+1}^{l, r} \mid \pi_{1}=k+1\right\}\right|}{\left|S_{n+1}^{l, r}\right|}$.

Random Variable

- Set

$$
\lambda_{n, k}=\left|\left\{\pi \in S_{n+1}^{\prime, r} \mid \pi_{1}=k+1\right\}\right|
$$

then

$$
\lambda_{n, k}=\binom{n}{k} a_{k} b_{n+1-k}, \quad 0 \leq k \leq n,
$$

where $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are the counting sequences for $\beta^{\prime}, \beta^{r}$, respectively.

Random Variable

- Define a bivariate generating function (BGF)

$$
\begin{aligned}
A(z, u)= & \sum_{n=0}^{\infty} \sum_{k=0}^{n} \lambda_{n, k} u^{k} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} u^{k} \frac{z^{n}}{n!} \\
= & \sum_{n=0}^{\infty} \sum_{i+j=n} a_{i} \frac{u^{i} z^{i}}{i!} b_{j} \frac{z^{j}}{j!} \\
= & \exp \left((z u)+\frac{(z u)^{2}}{2}+\cdots+\frac{(z u)^{\prime}}{l}\right) \\
& \cdot \exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{r}}{r}\right)
\end{aligned}
$$

- When $u=1$, we get

Random Variable

- Define a bivariate generating function (BGF)

$$
\begin{aligned}
A(z, u)= & \sum_{n=0}^{\infty} \sum_{k=0}^{n} \lambda_{n, k} u^{k} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} u^{k} \frac{z^{n}}{n!} \\
= & \sum_{n=0}^{\infty} \sum_{i+j=n} a_{i} \frac{u^{i} z^{i}}{i!} b_{j} \frac{z^{j}}{j!} \\
= & \exp \left((z u)+\frac{(z u)^{2}}{2}+\cdots+\frac{(z u)^{\prime}}{l}\right) \\
& \cdot \exp \left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{r}}{r}\right)
\end{aligned}
$$

- When $u=1$, we get

$$
A(z, 1)=\sum_{n=0}^{\infty}\left|S_{n+1}^{\prime, r}\right| \frac{z^{n}}{n!}=S^{l, r}(z)
$$

Random Variable

- The mean value and variance can be computed as

$$
\mu_{n}=\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}
$$

and

$$
\begin{aligned}
\sigma_{n}^{2}= & \frac{\left.\left[z^{n}\right] \frac{\partial^{2}}{\partial u^{2}} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}+\frac{\left.\frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)} \\
& -\left(\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}\right)^{2} .
\end{aligned}
$$

Generalized Quasi-powers Theorem

Theorem (Generalized Quasi-powers Theorem)

Assume that, for u in a fixed neighbourhood Ω of 1 , the generating function $p_{n}(u)$ of a non-negative discrete random variable (supported by $\mathbb{Z}_{\geq 0}$) X_{n} admits a representation of the form

$$
p_{n}(u)=\exp \left(h_{n}(u)\right)(1+o(1)),
$$

uniformly with respect to u, where each $h_{n}(u)$ is analytic in Ω. Assume also the conditions,

$$
h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1) \rightarrow \infty \quad \text { and } \quad \frac{h_{n}^{\prime \prime \prime}(u)}{\left(h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)\right)^{\frac{3}{2}}} \rightarrow 0
$$

uniformly for $u \in \Omega$. (to be continued...)

Generalized Quasi-powers Theorem

Theorem

(be continued)
Then, the random variable

$$
X_{n}^{*}=\frac{X_{n}-h_{n}^{\prime}(1)}{\left(h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)\right)^{\frac{1}{2}}}
$$

converges in distribution to a Gaussian with mean 0 and variance 1.

- Note that

$$
\begin{aligned}
\mu_{n} & \sim h_{n}^{\prime}(1) \\
\sigma_{n}^{2} & \sim h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)
\end{aligned}
$$

Generalized Quasi-powers Theorem

- Considering the exact form $p_{n}(u)=\exp \left(h_{n}(u)\right)$, we have

$$
\begin{aligned}
p_{n}^{\prime}(u)= & h_{n}^{\prime}(u) \exp \left(h_{n}(u)\right) \\
p_{n}^{\prime \prime}(u)= & h_{n}^{\prime \prime}(u) \exp \left(h_{n}(u)\right)+\left(h_{n}^{\prime}(u)\right)^{2} \exp \left(h_{n}(u)\right) \\
p_{n}^{\prime \prime \prime}(u)= & h_{n}^{\prime \prime \prime}(u) \exp \left(h_{n}(u)\right)+3 h_{n}^{\prime}(u) h_{n}^{\prime \prime}(u) \exp \left(h_{n}(u)\right) \\
& +\left(h_{n}^{\prime}(u)\right)^{3} \exp \left(h_{n}(u)\right) .
\end{aligned}
$$

- Hence

and

Generalized Quasi-powers Theorem

- Considering the exact form $p_{n}(u)=\exp \left(h_{n}(u)\right)$, we have

$$
\begin{aligned}
p_{n}^{\prime}(u)= & h_{n}^{\prime}(u) \exp \left(h_{n}(u)\right) \\
p_{n}^{\prime \prime}(u)= & h_{n}^{\prime \prime}(u) \exp \left(h_{n}(u)\right)+\left(h_{n}^{\prime}(u)\right)^{2} \exp \left(h_{n}(u)\right) \\
p_{n}^{\prime \prime \prime}(u)= & h_{n}^{\prime \prime \prime}(u) \exp \left(h_{n}(u)\right)+3 h_{n}^{\prime}(u) h_{n}^{\prime \prime}(u) \exp \left(h_{n}(u)\right) \\
& +\left(h_{n}^{\prime}(u)\right)^{3} \exp \left(h_{n}(u)\right) .
\end{aligned}
$$

- Hence

$$
h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)=\frac{p_{n}^{\prime}(1)}{p_{n}(1)}+\frac{p_{n}^{\prime \prime}(1)}{p_{n}(1)}-\left(\frac{p_{n}^{\prime}(1)}{p_{n}(1)}\right)^{2}
$$

and

$$
h_{n}^{\prime \prime \prime}(1)=\frac{p_{n}^{\prime \prime \prime}(1)}{p_{n}(1)}-3\left(\frac{p_{n}^{\prime}(1) p_{n}^{\prime \prime}(1)}{\left(p_{n}(1)\right)^{2}}\right)+2\left(\frac{p_{n}^{\prime}(1)}{p_{n}(1)}\right)^{3} .
$$

$(1, r)=(1,2)$

- First we set the BGF of the bounded deviated permutation $S_{n+1}^{1,2}$:

$$
A(z, u)=\exp \left((1+u) z+\frac{z^{2}}{2}\right)
$$

- The expected value μ_{n} can be computed as

$(1, r)=(1,2)$

- First we set the BGF of the bounded deviated permutation $S_{n+1}^{1,2}$:

$$
A(z, u)=\exp \left((1+u) z+\frac{z^{2}}{2}\right)
$$

- The expected value μ_{n} can be computed as

$$
\begin{aligned}
\mu_{n} & =\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)} \\
& =\frac{\left[z^{n}\right] z \exp \left(2 z+\frac{z^{2}}{2}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)} \\
& =\frac{\left[z^{n-1}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)}
\end{aligned}
$$

Main theorem

- We can compute the asymptotic formula for the coefficients of the formula $\exp \left(2 z+\frac{z^{2}}{2}\right)$.
- But $\lambda_{n, k}=\binom{n}{k} a_{k} b_{n-k}$ has no close form, we calculate its asymptotic, and we use the following theorem:

Theorem (Hayman formula)

Let $f(z)=\sum a_{n} z^{n}$ be an admissible function. Let r_{n} be the positive real root of the equation $a\left(r_{n}\right)=n$, for each $n=1,2, \cdots$, where $a\left(r_{n}\right)$ is given by $(r)=r \frac{f^{\prime}(r)}{f(r)}$. Then

$$
a_{n} \sim \frac{f\left(r_{n}\right)}{r_{n}^{n} \sqrt{2 \pi b\left(r_{n}\right)}} \text { as } n \rightarrow \infty
$$

where $b\left(r_{n}\right)$ is given by $b(r)=r a^{\prime}(r)$.

Main theorem

- We can compute the asymptotic formula for the coefficients of the formula $\exp \left(2 z+\frac{z^{2}}{2}\right)$.
- But $\lambda_{n, k}=\binom{n}{k} a_{k} b_{n-k}$ has no close form, we calculate its asymptotic, and we use the following theorem:

Theorem (Hayman formula)

Let $f(z)=\sum a_{n} z^{n}$ be an admissible function. Let r_{n} be the positive real root of the equation a $\left(r_{n}\right)=n$, for each $n=1,2, \cdots$, where $a\left(r_{n}\right)$ is given by a $(r)=r \frac{f^{\prime}(r)}{f(r)}$. Then

$$
a_{n} \sim \frac{f\left(r_{n}\right)}{r_{n}^{n} \sqrt{2 \pi b\left(r_{n}\right)}} \text { as } n \rightarrow \infty
$$

where $b\left(r_{n}\right)$ is given by $b(r)=r a^{\prime}(r)$.

Hayman formula

- Let

$$
f(z)=\exp \left(2 z+\frac{z^{2}}{2}\right)
$$

- then we have

$$
f^{\prime}(z)=(2+z) \exp \left(2 z+\frac{z^{2}}{2}\right)
$$

- and

$$
a(r)=r \frac{f^{\prime}(r)}{f(r)}=2 r+r^{2}
$$

Hayman formula

- Let

$$
f(z)=\exp \left(2 z+\frac{z^{2}}{2}\right)
$$

- then we have

$$
f^{\prime}(z)=(2+z) \exp \left(2 z+\frac{z^{2}}{2}\right)
$$

Hayman formula

- Let

$$
f(z)=\exp \left(2 z+\frac{z^{2}}{2}\right)
$$

- then we have

$$
f^{\prime}(z)=(2+z) \exp \left(2 z+\frac{z^{2}}{2}\right)
$$

- and

$$
a(r)=r \frac{f^{\prime}(r)}{f(r)}=2 r+r^{2}
$$

Hayman formula

- Now we solve the equation

$$
2 r_{n}+r_{n}^{2}=n
$$

- We get

Hayman formula

- Now we solve the equation

$$
2 r_{n}+r_{n}^{2}=n
$$

- We get

$$
\begin{aligned}
r_{n} & =-1+\sqrt{1+n}=-1+\sqrt{n} \sqrt{1+\frac{1}{n}} \\
& =\sqrt{n}\left(1+\frac{1}{2 n}-\frac{1}{8 n^{2}}+\cdots\right)-1 \\
& =\sqrt{n}-1+\frac{1}{2 \sqrt{n}}-\frac{1}{8 n^{\frac{3}{2}}}+\cdots
\end{aligned}
$$

Hayman formula

- Hence

$$
\begin{aligned}
r_{n}^{n} & =\left(\sqrt{n}-1+\frac{1}{2 \sqrt{n}}-\frac{1}{8 n^{\frac{3}{2}}}+\cdots\right)^{n} \\
& =(\sqrt{n})^{n}\left(1-\frac{1}{\sqrt{n}}+\frac{1}{2 n}-\cdots\right)^{n} \\
& =(n)^{\frac{n}{2}} \exp \left\{n \log \left(1-\frac{1}{\sqrt{n}}+\frac{1}{2 n}-\cdots\right)\right\} \\
= & (n)^{\frac{n}{2}} \exp \left(n\left(-\frac{1}{\sqrt{n}}+\frac{1}{2 n}\right)-\frac{1}{2}\left(-\frac{1}{\sqrt{n}}+\frac{1}{n}\right)^{2}\right. \\
& \left.+O\left(n^{\frac{-3}{2}}\right)\right) \\
\sim & (n)^{\frac{n}{2}} \exp (-\sqrt{n})
\end{aligned}
$$

Hayman formula

- Note that

$$
a^{\prime}(r)=2+2 r .
$$

- Also

$$
b(r)=r a^{\prime}(r)=2 r+2 r^{2},
$$

hence

$$
b\left(r_{n}\right)=2 r_{n}+2 r_{n}^{2} \sim 2 r_{n}^{2} \sim 2 n(n \rightarrow \infty) .
$$

- In the meantime,

$$
\begin{aligned}
f\left(r_{n}\right) & =\exp \left(2 r_{n}+\frac{r_{n}^{2}}{2}\right)=\exp \left(\frac{n}{2}+r_{n}\right) \\
& =\exp \left(\frac{n}{2}\right) \exp \left(\sqrt{n}-1+\frac{1}{2 \sqrt{n}}-\frac{1}{8 n^{\frac{3}{2}}}+\cdots\right) \\
& \sim \exp \left(\frac{n}{2}+\sqrt{n}-1+O\left(n^{\frac{-1}{2}}\right)\right)
\end{aligned}
$$

Hayman formula

- Note that

$$
a^{\prime}(r)=2+2 r .
$$

- Also

$$
b(r)=r a^{\prime}(r)=2 r+2 r^{2}
$$

hence

$$
b\left(r_{n}\right)=2 r_{n}+2 r_{n}^{2} \sim 2 r_{n}^{2} \sim 2 n(n \rightarrow \infty)
$$

- In the meantime,

Hayman formula

- Note that

$$
a^{\prime}(r)=2+2 r .
$$

- Also

$$
b(r)=r a^{\prime}(r)=2 r+2 r^{2}
$$

hence

$$
b\left(r_{n}\right)=2 r_{n}+2 r_{n}^{2} \sim 2 r_{n}^{2} \sim 2 n(n \rightarrow \infty)
$$

- In the meantime,

$$
\begin{aligned}
f\left(r_{n}\right) & =\exp \left(2 r_{n}+\frac{r_{n}^{2}}{2}\right)=\exp \left(\frac{n}{2}+r_{n}\right) \\
& =\exp \left(\frac{n}{2}\right) \exp \left(\sqrt{n}-1+\frac{1}{2 \sqrt{n}}-\frac{1}{8 n^{\frac{3}{2}}}+\cdots\right) \\
& \sim \exp \left(\frac{n}{2}+\sqrt{n}-1+O\left(n^{\frac{-1}{2}}\right)\right)
\end{aligned}
$$

$(1, r)=(1,2)$

- Finally, by Hayman formula,

$$
\begin{aligned}
a_{n} & \sim \frac{f\left(r_{n}\right)}{r_{n}^{n} \sqrt{2 \pi b\left(r_{n}\right)}} \\
& =\left(\frac{e}{n}\right)^{\frac{n}{2}} \frac{\exp (2 \sqrt{n}-1)}{\sqrt{4 n \pi}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right)
\end{aligned}
$$

- To get accuratly, by computer, the asymptotic formula for the coefficients of the formula $\exp \left(2 z+\frac{z^{2}}{2}\right)$ can be computed

$(1, r)=(1,2)$

- Finally, by Hayman formula,

$$
\begin{aligned}
a_{n} & \sim \frac{f\left(r_{n}\right)}{r_{n}^{n} \sqrt{2 \pi b\left(r_{n}\right)}} \\
& =\left(\frac{e}{n}\right)^{\frac{n}{2}} \frac{\exp (2 \sqrt{n}-1)}{\sqrt{4 n \pi}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right)
\end{aligned}
$$

- To get accuratly, by computer, the asymptotic formula for the coefficients of the formula $\exp \left(2 z+\frac{z^{2}}{2}\right)$ can be computed :

$$
\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}\right) \sim\left(\frac{e}{n} \frac{\frac{n}{2}}{\frac{e^{2 \sqrt{n}-1}}{\sqrt{4 n \pi}}\left(1+\frac{5}{6 \sqrt{n}}+O\left(n^{-1}\right)\right), ~(1)}\right.
$$

$(1, r)=(1,2)$

- So we have the expected value

$$
\mu_{n}=\frac{\left[z^{n-1}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)}=\sqrt{n}-1+O\left(n^{\frac{-1}{2}}\right)
$$

and

$$
\begin{aligned}
\sigma_{n}^{2}= & \frac{\left.\left[z^{n}\right] \frac{\partial^{2}}{\partial u^{2}} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}+\frac{\left.\frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)} \\
& -\left(\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}\right)^{2} \\
= & \frac{\left[z^{n-2}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}\right)}+\mu_{n}-\left(\mu_{n}\right)^{2} \\
= & \sqrt{n}-\frac{3}{2}+O\left(n^{\frac{-1}{2}}\right)
\end{aligned}
$$

```
(1,r)=(1,2)
```

- Here, we check the desired form of the quasi-power theorem.
- In this case,

$$
h_{n}^{\prime}(1) \sim \mu_{n},
$$

By Cauchy coefficient integral, we will have

$(1, r)=(1,2)$

- Here, we check the desired form of the quasi-power theorem.
- In this case,

$$
h_{n}^{\prime}(1) \sim \mu_{n}
$$

and

$$
h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1) \sim \sigma_{n}^{2} \rightarrow \infty \text { as } n \rightarrow \infty
$$

By Cauchy coefficient integral, we will have

$$
\frac{h_{n}^{\prime \prime \prime}(u)}{\left(h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)\right)^{\frac{3}{2}}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

$(1, r)=(1,2)$

Theorem

On $S_{n+1}^{1,2}$, the leading statistics

$$
X_{n}=\pi_{1}-1
$$

has the mean $\mu_{n} \sim \sqrt{n}-1$ and the variance $\sigma_{n}^{2} \sim \sqrt{n}-\frac{3}{2}$, and it admits a limit Gaussian law.

- figure $1:(, r)=(1,2), n=10000$, centered at its peak.

$(1, r)=(1,3)$

- We set the BGF of the bounded deviated permutation $S_{n+1}^{1,3}$:

$$
A(z, u)=\exp \left((1+u) z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- The expected value μ_{n} can be computed as

$(1, r)=(1,3)$

- We set the BGF of the bounded deviated permutation $S_{n+1}^{1,3}$:

$$
A(z, u)=\exp \left((1+u) z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- The expected value μ_{n} can be computed as

$$
\begin{aligned}
\mu_{n} & =\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}=\frac{\left[z^{n}\right] z \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)} \\
& =\frac{\left[z^{n-1}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}
\end{aligned}
$$

Hayman formula

- Let

$$
f(z)=\exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- then

$$
f^{\prime}(z)=\left(2+z+z^{2}\right) \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- and

Hayman formula

- Let

$$
f(z)=\exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- then

$$
f^{\prime}(z)=\left(2+z+z^{2}\right) \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right),
$$

Hayman formula

- Let

$$
f(z)=\exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- then

$$
f^{\prime}(z)=\left(2+z+z^{2}\right) \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)
$$

- and

$$
a(r)=r \frac{f^{\prime}(r)}{f(r)}=2 r+r^{2}+r^{3}
$$

Hayman formula

- Here we solve the equation

$$
2 r_{n}+r_{n}^{2}+r_{n}^{3}=n
$$

- Now we face a problem : solve the equation a $\left(r_{n}\right)=n$.
- It always in the form $C_{1} z^{1}+C_{2} z^{2}+\cdots+C_{k} z^{k}=n$, but we have no formula to solve it.
- So we transform the equation to the specific form $u=t \Phi(u)$, by proper substitution.
- By the Lagrange inversion formula, we will get the positive solution r_{n}.(may be asymptotic)

Hayman formula

- Here we solve the equation

$$
2 r_{n}+r_{n}^{2}+r_{n}^{3}=n
$$

- Now we face a problem : solve the equation $a\left(r_{n}\right)=n$.
- It always in the form $C_{1} z^{1}+C_{2} z^{2}+\cdots+C_{k} z^{k}=n$, but we have no formula to solve it.
- So we transform the equation to the specific form $u=t \phi(u)$, by proper substitution.
- By the Lagrange inversion formula, we will get the positive solution r_{n}.(may be asymptotic)

Hayman formula

- Here we solve the equation

$$
2 r_{n}+r_{n}^{2}+r_{n}^{3}=n
$$

- Now we face a problem: solve the equation $a\left(r_{n}\right)=n$.
- It always in the form $C_{1} z^{1}+C_{2} z^{2}+\cdots+C_{k} z^{k}=n$, but we have no formula to solve it.
- So we transform the equation to the specific form $u=t \Phi(u)$, by proper substitution.
- By the Lagrange inversion formula, we will get the positive solution r_{n}.(may be asymptotic)

Hayman formula

- Here we solve the equation

$$
2 r_{n}+r_{n}^{2}+r_{n}^{3}=n
$$

- Now we face a problem: solve the equation $a\left(r_{n}\right)=n$.
- It always in the form $C_{1} z^{1}+C_{2} z^{2}+\cdots+C_{k} z^{k}=n$, but we have no formula to solve it.
- So we transform the equation to the specific form $u=t \Phi(u)$, by proper substitution.
- By the Lagrange inversion formula, we will get the positive solution r_{n}.(may be asymptotic)

Hayman formula

- Here we solve the equation

$$
2 r_{n}+r_{n}^{2}+r_{n}^{3}=n
$$

- Now we face a problem: solve the equation $a\left(r_{n}\right)=n$.
- It always in the form $C_{1} z^{1}+C_{2} z^{2}+\cdots+C_{k} z^{k}=n$, but we have no formula to solve it.
- So we transform the equation to the specific form $u=t \Phi(u)$, by proper substitution.
- By the Lagrange inversion formula, we will get the positive solution r_{n}.(may be asymptotic)

Solve Equation

- Let

$$
u=\left(r_{n}\right)^{-1}
$$

then

$$
2 u^{-1}+u^{-2}+u^{-3}=n
$$

implies

$$
2 u^{2}+u+1=u^{3} n
$$

Solve Equation

- Thus

$$
\left(2 u^{2}+u+1\right)^{\frac{1}{3}}=u n^{\frac{1}{3}}
$$

$$
t=n^{\frac{-1}{3}}, \Phi(u)=\left(2 u^{2}+u+1\right)^{\frac{1}{3}}
$$

- Note that

$$
\Phi(0)=1
$$

- ($*$) becomes

$$
u(t)=t \Phi(u(t)) .
$$

- Now we can applied the Lagrange inversion formula

$$
\left[t^{n}\right] u(t)=\frac{1}{n}\left[t^{n-1}\right](\Phi(t))^{n} \quad(n \geq 1)
$$

Solve Equation

- Thus

$$
\left(2 u^{2}+u+1\right)^{\frac{1}{3}}=u n^{\frac{1}{3}}
$$

$$
(*)
$$

- Let

$$
t=n^{\frac{-1}{3}}, \Phi(u)=\left(2 u^{2}+u+1\right)^{\frac{1}{3}} .
$$

- Note that

$$
\Phi(0)=1
$$

- (*) becomes

$$
u(t)=t \Phi(u(t))
$$

- Now we can applied the Lagrange inversion formula

$$
\left[t^{n}\right] u(t)=\frac{1}{n}\left[t^{n-1}\right](\phi(t))^{n} \quad(n \geq 1)
$$

Solve Equation

- Thus

$$
\left(2 u^{2}+u+1\right)^{\frac{1}{3}}=u n^{\frac{1}{3}}
$$

$$
(*)
$$

- Let

$$
t=n^{\frac{-1}{3}}, \Phi(u)=\left(2 u^{2}+u+1\right)^{\frac{1}{3}}
$$

- Note that

$$
\Phi(0)=1
$$

- (*) becomes

$$
u(t)=t \Phi(u(t))
$$

- Now we can applied the Lagrange inversion formula

$$
\left[t^{n}\right] u(t)=\frac{1}{n}\left[t^{n-1}\right](\Phi(t))^{n} \quad(n \geq 1)
$$

Solve Equation

- Thus

$$
\left(2 u^{2}+u+1\right)^{\frac{1}{3}}=u n^{\frac{1}{3}}
$$

$$
(*)
$$

- Let

$$
t=n^{\frac{-1}{3}}, \Phi(u)=\left(2 u^{2}+u+1\right)^{\frac{1}{3}}
$$

- Note that

$$
\Phi(0)=1
$$

- (*) becomes

$$
u(t)=t \Phi(u(t))
$$

- Now we can applied the Lagrange inversion formula

$$
\left[t^{n}\right] u(t)=\frac{1}{n}\left[t^{n-1}\right](\Phi(t))^{n} \quad(n \geq 1)
$$

Solve Equation

- Thus

$$
\begin{equation*}
\left(2 u^{2}+u+1\right)^{\frac{1}{3}}=u n^{\frac{1}{3}} \tag{*}
\end{equation*}
$$

- Let

$$
t=n^{\frac{-1}{3}}, \Phi(u)=\left(2 u^{2}+u+1\right)^{\frac{1}{3}} .
$$

- Note that

$$
\Phi(0)=1
$$

- (*) becomes

$$
u(t)=t \Phi(u(t))
$$

- Now we can applied the Lagrange inversion formula

$$
\left[t^{n}\right] u(t)=\frac{1}{n}\left[t^{n-1}\right](\Phi(t))^{n} \quad(n \geq 1)
$$

Lagrange Inversion Formula

- Compute

$$
\begin{aligned}
\Phi(t) & =\left(2 t^{2}+t+1\right)^{\frac{1}{3}}=1+\frac{t}{3}+\frac{5 t^{2}}{9}+\cdots \\
\Phi^{2}(t) & =\left(2 t^{2}+t+1\right)^{\frac{2}{3}}=1+\frac{2 t}{3}+\frac{11 t^{2}}{9}+\cdots \\
\Phi^{3}(t) & =\left(2 t^{2}+t+1\right)^{\frac{3}{3}}=1+t+2 t^{2} \\
\Phi^{4}(t) & =\left(2 t^{2}+t+1\right)^{\frac{4}{3}}=1+\frac{4 t}{3}+\frac{26 t^{2}}{9}+\frac{68 t^{3}}{81}+\cdots
\end{aligned}
$$

- Hence

Lagrange Inversion Formula

- Compute

$$
\begin{aligned}
\Phi(t) & =\left(2 t^{2}+t+1\right)^{\frac{1}{3}}=1+\frac{t}{3}+\frac{5 t^{2}}{9}+\cdots \\
\Phi^{2}(t) & =\left(2 t^{2}+t+1\right)^{\frac{2}{3}}=1+\frac{2 t}{3}+\frac{11 t^{2}}{9}+\cdots \\
\Phi^{3}(t) & =\left(2 t^{2}+t+1\right)^{\frac{3}{3}}=1+t+2 t^{2} \\
\Phi^{4}(t) & =\left(2 t^{2}+t+1\right)^{\frac{4}{3}}=1+\frac{4 t}{3}+\frac{26 t^{2}}{9}+\frac{68 t^{3}}{81}+\cdots
\end{aligned}
$$

- Hence

$$
u(t)=t+\frac{t^{2}}{3}+\frac{2 t^{3}}{3}+\frac{17 t^{4}}{81}+\cdots
$$

Lagrange Inversion Formula

- Finally, we get

$$
\begin{aligned}
r_{n} & =u^{-1} \\
& =t^{-1}\left(1+\frac{t}{3}+\frac{2 t^{2}}{3}+\frac{17 t^{3}}{81}+\cdots\right)^{-1} \\
& =t^{-1}\left(1-\frac{t}{3}-\frac{5 t^{2}}{9}+\frac{16 t^{3}}{81}+\cdots\right) \\
& =t^{-1}-\frac{1}{3}-\frac{5 t}{9}+\frac{16 t^{2}}{81}+\cdots \\
& =n^{\frac{1}{3}}-\frac{1}{3}-\frac{5}{9} n^{\frac{-1}{3}}+\frac{16}{81} n^{\frac{-2}{3}}+O\left(n^{-1}\right)
\end{aligned}
$$

$(1, r)=(1,3)$

- By computer, the asymptotic formula for the coefficients of the formula $\exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)$ can be computed:

$$
\begin{aligned}
& {\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right) } \\
\sim & \frac{f\left(r_{n}\right)}{r_{n}^{n} \sqrt{2 \pi b\left(r_{n}\right)}} \\
\sim & \left(\frac{e}{n}\right)^{\frac{n}{3}} \frac{e^{\frac{1}{2} n^{\frac{2}{3}}+\frac{11}{6} n^{\frac{1}{3}}-\frac{11}{18}}}{\sqrt{6 n \pi}}\left(1-\frac{95}{324 n^{\frac{1}{3}}}+O\left(n^{-1}\right)\right)
\end{aligned}
$$

$(1, r)=(1,3)$

- Thus

$$
\mu_{n}=\frac{\left[z^{n-1}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}=n^{\frac{1}{3}}-\frac{1}{3}++O\left(n^{\frac{-1}{3}}\right) .
$$

- And

$(1, r)=(1,3)$

- Thus

$$
\mu_{n}=\frac{\left[z^{n-1}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}=n^{\frac{1}{3}}-\frac{1}{3}++O\left(n^{\frac{-1}{3}}\right) .
$$

- And

$$
\begin{aligned}
\sigma_{n}^{2}= & \frac{\left.\left[z^{n}\right] \frac{\partial^{2}}{\partial u^{2}} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}+\frac{\left.\frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)} \\
& -\left(\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}\right)^{2} \\
= & \frac{\left[z^{n-2}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}{\left[z^{n}\right] \exp \left(2 z+\frac{z^{2}}{2}+\frac{z^{3}}{3}\right)}+\mu_{n}-\left(\mu_{n}\right)^{2} \\
= & n^{\frac{1}{3}}-\frac{1}{3}++O\left(n^{\frac{-1}{3}}\right) .
\end{aligned}
$$

```
(1,r)=(1,3)
```

- Similarly, we check the desired form of the quasi-power theorem.
- In this case,

$$
h_{n}^{\prime}(1) \sim \mu_{n}
$$

By Cauchy coefficient integral, we will have

$$
\frac{h_{n}^{\prime \prime \prime}(u)}{\left(h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)\right)^{\frac{3}{2}}}
$$

$(1, r)=(1,3)$

- Similarly, we check the desired form of the quasi-power theorem.
- In this case,

$$
h_{n}^{\prime}(1) \sim \mu_{n},
$$

and

$$
h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1) \sim \sigma_{n}^{2} \rightarrow \infty \text { as } n \rightarrow \infty
$$

By Cauchy coefficient integral, we will have

$$
\frac{h_{n}^{\prime \prime \prime}(u)}{\left(h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)\right)^{\frac{3}{2}}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

$(1, r)=(1,3)$

Theorem

On $S_{n+1}^{1,3}$,the leading statistics

$$
X_{n}=\pi_{1}-1
$$

has the mean $\mu_{n} \sim \sqrt[3]{n}-\frac{1}{3}$ and the variance $\sigma_{n}^{2} \sim \sqrt[3]{n}-\frac{1}{3}$, and it admits a limit Gaussian law.

- figure $2:(, r)=(1,3), n=10000$, centered at its peak.

$(1, r)=(2,2)$

- We set the BGF of the bounded deviated permutation $S_{n+1}^{2,2}$:

$$
A(z, u)=\exp \left((1+u) z+\left(1+u^{2}\right) \frac{z^{2}}{2}\right)
$$

- The expected value μ_{n} can be computed as

$(1, r)=(2,2)$

- We set the BGF of the bounded deviated permutation $S_{n+1}^{2,2}$:

$$
A(z, u)=\exp \left((1+u) z+\left(1+u^{2}\right) \frac{z^{2}}{2}\right)
$$

- The expected value μ_{n} can be computed as

$$
\begin{aligned}
\mu_{n} & =\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)} \\
& =\frac{\left[z^{n}\right]\left(z+z^{2}\right) \exp \left(2 z+z^{2}\right)}{\left[z^{n}\right] \exp \left(2 z+z^{2}\right)}
\end{aligned}
$$

$(1, r)=(2,2)$

- The asymptotic formula for the coefficients of the formula $\exp \left(2 z+z^{2}\right)$ can also be computed by computer :

$$
\left[z^{n}\right] \exp \left(2 z+z^{2}\right) \sim\left(\frac{2 e}{n}\right)^{\frac{n}{2}} \frac{\exp \left(\sqrt{2 n}-\frac{1}{2}\right)}{\sqrt{4 n \pi}}\left(1+\frac{\sqrt{2}}{3 \sqrt{n}}+O\left(n^{-1}\right)\right)
$$

- Thus

$(1, r)=(2,2)$

- The asymptotic formula for the coefficients of the formula $\exp \left(2 z+z^{2}\right)$ can also be computed by computer :

$$
\left[z^{n}\right] \exp \left(2 z+z^{2}\right) \sim\left(\frac{2 e}{n}\right)^{\frac{n}{2}} \frac{\exp \left(\sqrt{2 n}-\frac{1}{2}\right)}{\sqrt{4 n \pi}}\left(1+\frac{\sqrt{2}}{3 \sqrt{n}}+O\left(n^{-1}\right)\right)
$$

- Thus

$$
\begin{aligned}
\mu_{n} & =\frac{\left[z^{n}\right]\left(z+z^{2}\right) \exp \left(2 z+z^{2}\right)}{\left[z^{n}\right] \exp \left(2 z+z^{2}\right)} \\
& =\frac{\left[z^{n-1}\right] \exp \left(2 z+z^{2}\right)+\left[z^{n-2}\right] \exp \left(2 z+z^{2}\right)}{\left[z^{n}\right] \exp \left(2 z+z^{2}\right)} \\
& \sim \frac{1}{2} n+O\left(n^{-1}\right)
\end{aligned}
$$

$(1, r)=(2,2)$

- And

$$
\begin{aligned}
\sigma_{n}^{2}= & \frac{\left.\left[z^{n}\right] \frac{\partial^{2}}{\partial u^{2}} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}+\frac{\left.\frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)} \\
& -\left(\frac{\left.\left[z^{n}\right] \frac{\partial}{\partial u} A(z, u)\right|_{u=1}}{\left[z^{n}\right] A(z, 1)}\right)^{2} \\
= & \frac{\left[z^{n-4}\right] \exp \left(2 z+z^{2}\right)}{\left[z^{n}\right] \exp \left(2 z+z^{2}\right)}+2 \cdot \frac{\left[z^{n-3}\right] \exp \left(2 z+z^{2}\right)}{\left[z^{n}\right] \exp \left(2 z+z^{2}\right)} \\
& +2 \frac{\left[z^{n-2}\right] \exp \left(2 z+z^{2}\right)}{\left[z^{n}\right] \exp \left(2 z+z^{2}\right)}+\mu_{n}-\left(\mu_{n}\right)^{2} \\
\sim & \frac{1}{2} n-\frac{\sqrt{2 n}}{4}+O(1) .
\end{aligned}
$$

$(1, r)=(2,2)$

- In this case,

$$
h_{n}^{\prime}(1) \sim \mu_{n}
$$

and

$$
h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1) \sim \sigma_{n}^{2} \rightarrow \infty \text { as } n \rightarrow \infty
$$

Similarly, by Cauchy coefficient integral, we will have

$$
\frac{h_{n}^{\prime \prime \prime}(u)}{\left(h_{n}^{\prime}(1)+h_{n}^{\prime \prime}(1)\right)^{\frac{3}{2}}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

$(1, r)=(2,2)$

Theorem

On $S_{n+1}^{2,2}$, the leading statistics

$$
X_{n}=\pi_{1}-1
$$

has the mean $\mu_{n} \sim \frac{n}{2}$ and the variance $\sigma_{n}^{2} \sim \frac{1}{2} n-\frac{\sqrt{2 n}}{4}$, and it admits a limit Gaussian law.

- figure $3:(, r)=(2,2), n=10000$, centered at its peak.

Conclusion and Further Discussion

- General cases, such like $S_{n+1}^{2,3}$.
- The distribution of the second statistics, the third statistics,

Conclusion and Further Discussion

- General cases, such like $S_{n+1}^{2,3}$.
- The distribution of the second statistics, the third statistics, etc.

Reference

- M. Aigner, A Course in Enumeration, Springer-Verlag Berlin Heidelberg 2007
- Sen-Peng Eu, Yen-Chi R. Lin, Yuan- Hsun Lo, Bounded deviated permutations, [preprint]
- Philippe Flajolet, Robert Sedgewick, Analytic Combinatorics, Cambridge University Press 2009
- Hayman, Walter, A generalisation of Stirling's formula, Journal für die reine und angewandte Mathematik 196 (1956), 67-95
- Herbert S. Wilf, generatingfunctionology,2nd edition,1994

Final

Thank you for your attention!!

