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Sketch the problem

Original question: In how many ways can one list the
numbers 1; 2; : : : ; n such that apart from the leading element
the number k can be placed only if either k � 1 or k + 1
already appears?

We are concerned with the bounded deviated permutation
within (`; r), denoted by S l ;rn+1.

We de�ned a random variable Xn = k if �1 = k + 1 for
� = �1�2 � � ��n+1 2 S`;rn+1 on the S

l ;r
n+1 .

Conjecture: the random variable will converge to a Gaussian
distribution.

2 / 1



Sketch the problem

Original question: In how many ways can one list the
numbers 1; 2; : : : ; n such that apart from the leading element
the number k can be placed only if either k � 1 or k + 1
already appears?

We are concerned with the bounded deviated permutation
within (`; r), denoted by S l ;rn+1.

We de�ned a random variable Xn = k if �1 = k + 1 for
� = �1�2 � � ��n+1 2 S`;rn+1 on the S

l ;r
n+1 .

Conjecture: the random variable will converge to a Gaussian
distribution.

2 / 1



Sketch the problem

Original question: In how many ways can one list the
numbers 1; 2; : : : ; n such that apart from the leading element
the number k can be placed only if either k � 1 or k + 1
already appears?

We are concerned with the bounded deviated permutation
within (`; r), denoted by S l ;rn+1.

We de�ned a random variable Xn = k if �1 = k + 1 for
� = �1�2 � � ��n+1 2 S`;rn+1 on the S

l ;r
n+1 .

Conjecture: the random variable will converge to a Gaussian
distribution.

2 / 1



Sketch the problem

Original question: In how many ways can one list the
numbers 1; 2; : : : ; n such that apart from the leading element
the number k can be placed only if either k � 1 or k + 1
already appears?

We are concerned with the bounded deviated permutation
within (`; r), denoted by S l ;rn+1.

We de�ned a random variable Xn = k if �1 = k + 1 for
� = �1�2 � � ��n+1 2 S`;rn+1 on the S

l ;r
n+1 .

Conjecture: the random variable will converge to a Gaussian
distribution.

2 / 1



Bounded Deviated Permutation

De�nition
A permutation � = �1�2 � � ��n+1 2 Sn+1 is bounded deviated
within (l ; r) if, for i � 2; the value k can be assigned to �i only if
at least one of the values in (k � l ; k + r) has appeared among
�1; �2; � � � ; �i�1; or equivalently,

min f�1; �2; � � � ; �i�1g � l � �i � max f�1; �2; � � � ; �i�1g+ r

for all i � 2:

For example, 3425716 is bounded deviated within (1; 2) ; but
4523617 is not.

Notation: S l ;rn+1 be the set of (l ; r)-bounded deviated
permutations.
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Bounded Deviated Permutation

De�nition

Let � = �1�2 � � ��n+1 2 Sn+1: The upward subsequence (resp.
downward subsequence) of � is the subsequence �+ (resp. ��) of
� which consists of all numbers that are larger (resp. smaller) than
�1:

De�ne the reduced word of �+ to be the word red(�+)
obtained by substracting �1 from each number of �+; whereas
the reduced word of �� to be the word red(��) obtained by
substracting each number from �1:

For example, let � = 3425716 2 S7; then �+ = 4576;
red(�+) = 1243; �� = 21; and red(��) = 12:
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Bounded Deviated Permutation

De�nition
For r ; k 2 N; a plus-r word in Sn+1 is a permutation
� = �1�2 � � ��n+1 2 Sn+1 such that �1 � r ; and
�i � max f�1; �2; � � � ; �i�1g+ r for all i � 1: The set of all such
words is denoted by �rn+1: The collection of all plus-r words
regardless of their lengths is denoted �r = [1k=0�

r
k :

Let l ; r ; n 2 N: Then � 2 S l ;rn+1 if and only if
(red(��); red(�+)) 2 � l�1�1 � �

r
n+1��1 :

For example, � = 3425716 2 S1;27 if and only if
(red(��); red(�+)) = (12; 1243) 2 �13�1 � �27�3:

5 / 1



Bounded Deviated Permutation

De�nition
For r ; k 2 N; a plus-r word in Sn+1 is a permutation
� = �1�2 � � ��n+1 2 Sn+1 such that �1 � r ; and
�i � max f�1; �2; � � � ; �i�1g+ r for all i � 1: The set of all such
words is denoted by �rn+1: The collection of all plus-r words
regardless of their lengths is denoted �r = [1k=0�

r
k :

Let l ; r ; n 2 N: Then � 2 S l ;rn+1 if and only if
(red(��); red(�+)) 2 � l�1�1 � �

r
n+1��1 :

For example, � = 3425716 2 S1;27 if and only if
(red(��); red(�+)) = (12; 1243) 2 �13�1 � �27�3:

5 / 1



Bounded Deviated Permutation

Theorem (Eu-Lin-Lo,2014)

There ia a bijection between the set �rn+1 of plus-r words in Sn+1
and permutations in Sn+1 that have only cycles of length at most r.

Corollary

A bounded deviated permutation within (l ; r) can be decomposed
into a pair of two sequences, such that the �rst of which has cycle
length bounded by l and the other bounded by r .

The enumeration of
���S l ;rn+1��� is

���S l ;rn+1��� = n+1X
j=1

�
n

j � 1

�
�
���� lj ��� � ���rn+1�j �� :
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Bounded Deviated Permutation

The EGF of the numbers of permutations, all of whose cycles
have lengths at most r is known to be

Sr (z) = exp
�
z +

z2

2
+ � � �+ z

r

r

�
;

hence it is also the EGF for
���rn+1�� :

Theorem

The EGF of
���S l ;rn+1��� is

S l ;r (z) =
X
n�0

���S l ;rn+1��� zn+1n!
= exp

�
z +

z2

2
+ � � �+ z

l

l

�
exp

�
z +

z2

2
+ � � �+ z

r

r

�
= Sl (z) � Sr (z) :
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Random Variable

Assume the permutation S l ;rn+1 are uniformly distributed.

De�ne the random variable Xn on the set of all (l ; r)-bounded
deviated permutations S l ;rn+1 by Xn = k if �1 = k + 1 for

� = �1�2 � � ��n+1 2 S l ;rn+1:

The probability function: P (Xn) =

���n�2S l;rn+1j�1=k+1o������S l;rn+1��� .
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Random Variable

Set
�n;k =

���n� 2 S l ;rn+1 j�1 = k + 1o��� ;
then

�n;k =

�
n
k

�
akbn+1�k ; 0 � k � n;

where (an) and (bn) are the counting sequences for � l; �
r ;

respectively.
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Random Variable

De�ne a bivariate generating function (BGF)

A(z ; u) =
1X
n=0

nX
k=0

�n;kuk
zn

n!
=

1X
n=0

nX
k=0

�
n
k

�
akbn�kuk

zn

n!

=
1X
n=0

X
i+j=n

ai
uiz i

i !
bj
z j

j!

= exp

 
(zu) +

(zu)2

2
+ � � �+ (zu)

l

l

!

� exp
�
z +

z2

2
+ � � �+ z

r

r

�
;

When u = 1, we get

A(z ; 1) =
1X
n=0

���S l ;rn+1��� znn! = S l ;r (z) ;
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Random Variable

The mean value and variance can be computed as

�n =
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

and

�2n =
[zn] @

2

@u2A(z ; u)ju=1
[zn]A(z ; 1)

+
@
@uA(z ; u)ju=1
[zn]A(z ; 1)

�
 
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

!2
:

11 / 1



Generalized Quasi-powers Theorem

Theorem (Generalized Quasi-powers Theorem)

Assume that, for u in a �xed neighbourhood 
 of 1, the generating
function pn(u) of a non-negative discrete random variable
(supported by Z�0) Xn admits a representation of the form

pn(u) = exp (hn (u)) (1+ o (1)) ;

uniformly with respect to u; where each hn (u) is analytic in 
:
Assume also the conditions,

h0n (1) + h
00
n (1)!1 and

h000n (u)

(h0n (1) + h00n (1))
3
2

! 0;

uniformly for u 2 
: (to be continued...)
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Generalized Quasi-powers Theorem

Theorem

(be continued)
Then, the random variable

X �n =
Xn � h0n (1)

(h0n (1) + h00n (1))
1
2

converges in distribution to a Gaussian with mean 0 and variance 1.

Note that

�n � h0n (1) ;

�2n � h0n (1) + h
00
n (1)

13 / 1



Generalized Quasi-powers Theorem

Considering the exact form pn(u) = exp (hn (u)) ; we have

p0n(u) = h0n (u) exp (hn (u)) ;

p00n (u) = h00n (u) exp (hn (u)) +
�
h0n (u)

�2 exp (hn (u)) ;
p000n (u) = h000n (u) exp (hn (u)) + 3h

0
n (u) h

00
n (u) exp (hn (u))

+
�
h0n (u)

�3 exp (hn (u)) :
Hence

h0n (1) + h
00
n (1) =

p0n (1)
pn(1)

+
p00n (1)
pn(1)

�
�
p0n (1)
pn(1)

�2
and

h000n (1) =
p000n (1)
pn(1)

� 3
�
p0n(1)p

00
n (1)

(pn(1))
2

�
+ 2

�
p0n (1)
pn(1)

�3
:
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(l,r)=(1,2)

First we set the BGF of the bounded deviated permutation
S1;2n+1 :

A(z ; u) = exp((1+ u)z +
z2

2
);

The expected value �n can be computed as

�n =
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

=
[zn]z exp(2z + z 2

2 )

[zn] exp(2z + z 2
2 )

=
[zn�1] exp(2z + z 2

2 )

[zn] exp(2z + z 2
2 )
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Main theorem

We can compute the asymptotic formula for the coe¢ cients
of the formula exp(2z + z 2

2 ):

But �n;k =
�n
k

�
akbn�k has no close form, we calculate its

asymptotic, and we use the following theorem:

Theorem (Hayman formula)

Let f (z) =
P
anzn be an admissible function. Let rn be the

positive real root of the equation a (rn) = n, for each n = 1; 2; � � � ;
where a (rn) is given by a (r) = r

f 0(r )
f (r ) . Then

an �
f (rn)

rnn
p
2�b (rn)

as n!1;

where b (rn) is given by b (r) = ra0 (r) :

16 / 1



Main theorem

We can compute the asymptotic formula for the coe¢ cients
of the formula exp(2z + z 2

2 ):

But �n;k =
�n
k

�
akbn�k has no close form, we calculate its

asymptotic, and we use the following theorem:

Theorem (Hayman formula)

Let f (z) =
P
anzn be an admissible function. Let rn be the

positive real root of the equation a (rn) = n, for each n = 1; 2; � � � ;
where a (rn) is given by a (r) = r

f 0(r )
f (r ) . Then

an �
f (rn)

rnn
p
2�b (rn)

as n!1;

where b (rn) is given by b (r) = ra0 (r) :

16 / 1



Hayman formula

Let

f (z) = exp
�
2z +

z2

2

�
;

then we have

f 0 (z) = (2+ z) exp
�
2z +

z2

2

�
;

and

a (r) = r
f 0(r)
f (r)

= 2r + r2:
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Hayman formula

Now we solve the equation

2rn + r2n = n :

We get

rn = �1+
p
1+ n = �1+

p
n

r
1+

1
n

=
p
n
�
1+

1
2n
� 1
8n2

+ � � �
�
� 1

=
p
n � 1+ 1

2
p
n
� 1

8n
3
2

+ � � �
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Hayman formula

Hence

rnn =

�p
n � 1+ 1

2
p
n
� 1

8n
3
2

+ � � �
�n

=
�p
n
�n �1� 1p

n
+
1
2n
� � � �

�n
= (n)

n
2 exp

�
n log

�
1� 1p

n
+
1
2n
� � � �

��
= (n)

n
2 exp

 
n
�
� 1p

n
+
1
2n

�
� 1
2

�
� 1p

n
+
1
n

�2
+O

�
n
�3
2

��
� (n)

n
2 exp

�
�
p
n
�
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Hayman formula

Note that
a0(r) = 2+ 2r :

Also
b (r) = ra0 (r) = 2r + 2r2;

hence

b (rn) = 2rn + 2r2n � 2r2n � 2n (n!1) :
In the meantime,

f (rn) = exp
�
2rn +

r2n
2

�
= exp

�n
2
+ rn

�
= exp

�n
2

�
exp

�p
n � 1+ 1

2
p
n
� 1

8n
3
2

+ � � �
�

� exp
�n
2
+
p
n � 1+ O

�
n
�1
2

��
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(l,r)=(1,2)

Finally, by Hayman formula,

an � f (rn)

rnn
p
2�b (rn)

=
�e
n

� n
2 exp

�
2
p
n � 1

�
p
4n�

�
1+ O(n�

1
2 )
�

To get accuratly, by computer, the asymptotic formula for the
coe¢ cients of the formula exp(2z + z 2

2 ) can be computed :

[zn] exp(2z +
z2

2
) � (e

n
)
n
2
e2
p
n�1

p
4n�

(1+
5
6
p
n
+ O(n�1))
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(l,r)=(1,2)

So we have the expected value

�n =
[zn�1] exp(2z + z 2

2 )

[zn] exp(2z + z 2
2 )

=
p
n � 1+ O

�
n
�1
2

�
;

and

�2n =
[zn] @

2

@u2A(z ; u)ju=1
[zn]A(z ; 1)

+
@
@uA(z ; u)ju=1
[zn]A(z ; 1)

�
 
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

!2

=
[zn�2] exp(2z + z 2

2 )

[zn] exp(2z + z 2
2 )

+ �n � (�n)2

=
p
n � 3

2
+ O

�
n
�1
2

�
22 / 1



(l,r)=(1,2)

Here, we check the desired form of the quasi-power theorem.

In this case,
h0n (1) � �n;

and
h0n (1) + h

00
n (1) � �2n !1 as n!1:

By Cauchy coe¢ cient integral, we will have

h000n (u)

(h0n (1) + h00n (1))
3
2

! 0 as n!1;
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(l,r)=(1,2)

Theorem

On S1;2n+1; the leading statistics

Xn = �1 � 1

has the mean �n �
p
n � 1 and the variance �2n �

p
n � 3

2 ; and it
admits a limit Gaussian law.
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l

�gure 1 : (; r) = (1; 2) ; n = 10000; centered at its peak.
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(l,r)=(1,3)

We set the BGF of the bounded deviated permutation S1;3n+1 :

A(z ; u) = exp((1+ u)z +
z2

2
+
z3

3
):

The expected value �n can be computed as

�n =
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

=
[zn]z exp(2z + z 2

2 +
z 3
3 )

[zn] exp(2z + z 2
2 +

z 3
3 )

=
[zn�1] exp(2z + z 2

2 +
z 3
3 )

[zn] exp(2z + z 2
2 +

z 3
3 )

:
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Hayman formula

Let

f (z) = exp
�
2z +

z2

2
+
z3

3

�
;

then

f 0 (z) =
�
2+ z + z2

�
exp

�
2z +

z2

2
+
z3

3

�
;

and

a (r) = r
f 0(r)
f (r)

= 2r + r2 + r3:
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Hayman formula

Here we solve the equation

2rn + r2n + r
3
n = n :

Now we face a problem : solve the equation a (rn) = n:

It always in the form C1z1 + C2z2 + � � �+ Ckzk = n; but we
have no formula to solve it.

So we transform the equation to the speci�c form u = t� (u),
by proper substitution.

By the Lagrange inversion formula, we will get the positive
solution rn:(may be asymptotic)
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Solve Equation

Let
u = (rn)

�1 ;

then
2u�1 + u�2 + u�3 = n

implies
2u2 + u + 1 = u3n:
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Solve Equation

Thus �
2u2 + u + 1

� 1
3 = un

1
3 (�):

Let
t = n

�1
3 ;� (u) =

�
2u2 + u + 1

� 1
3 :

Note that
� (0) = 1

(�) becomes
u (t) = t� (u (t)) :

Now we can applied the Lagrange inversion formula

[tn] u (t) =
1
n

�
tn�1

�
(� (t))n (n � 1)
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Lagrange Inversion Formula

Compute

� (t) =
�
2t2 + t + 1

� 1
3 = 1+

t
3
+
5t2

9
+ � � �

�2 (t) =
�
2t2 + t + 1

� 2
3 = 1+

2t
3
+
11t2

9
+ � � �

�3 (t) =
�
2t2 + t + 1

� 3
3 = 1+ t + 2t2

�4 (t) =
�
2t2 + t + 1

� 4
3 = 1+

4t
3
+
26t2

9
+
68t3

81
+ � � �

Hence

u (t) = t +
t2

3
+
2t3

3
+
17t4

81
+ � � �
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Lagrange Inversion Formula

Finally, we get

rn = u�1

= t�1
�
1+

t
3
+
2t2

3
+
17t3

81
+ � � �

��1
= t�1

�
1� t

3
� 5t

2

9
+
16t3

81
+ � � �

�
= t�1 � 1

3
� 5t
9
+
16t2

81
+ � � �

= n
1
3 � 1

3
� 5
9
n
�1
3 +

16
81
n
�2
3 + O

�
n�1
�
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(l,r)=(1,3)

By computer, the asymptotic formula for the coe¢ cients of
the formula exp(2z + z 2

2 +
z 3
3 ) can be computed:

[zn] exp(2z +
z2

2
+
z3

3
)

� f (rn)

rnn
p
2�b (rn)

� (
e
n
)
n
3
e
1
2 n

2
3+ 11

6 n
1
3� 11

18
p
6n�

(1� 95

324n
1
3

+ O(n�1))
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(l,r)=(1,3)

Thus

�n =
[zn�1] exp(2z + z 2

2 +
z 3
3 )

[zn] exp(2z + z 2
2 +

z 3
3 )

= n
1
3 � 1

3
++O

�
n
�1
3

�
:

And

�2n =
[zn] @

2

@u2A(z ; u)ju=1
[zn]A(z ; 1)

+
@
@uA(z ; u)ju=1
[zn]A(z ; 1)

�
 
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

!2

=
[zn�2] exp(2z + z 2

2 +
z 3
3 )

[zn] exp(2z + z 2
2 +

z 3
3 )

+ �n � (�n)2

= n
1
3 � 1

3
++O

�
n
�1
3

�
:
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(l,r)=(1,3)

Similarly, we check the desired form of the quasi-power
theorem.

In this case,
h0n (1) � �n;

and
h0n (1) + h

00
n (1) � �2n !1 as n!1:

By Cauchy coe¢ cient integral, we will have

h000n (u)

(h0n (1) + h00n (1))
3
2

! 0 as n!1;
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(l,r)=(1,3)

Theorem

On S1;3n+1;the leading statistics

Xn = �1 � 1

has the mean �n � 3
p
n � 1

3 and the variance �
2
n � 3

p
n � 1

3 ; and it
admits a limit Gaussian law.
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l

�gure 2 : (; r) = (1; 3) ; n = 10000; centered at its peak.
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(l,r)=(2,2)

We set the BGF of the bounded deviated permutation S2;2n+1 :

A(z ; u) = exp
�
(1+ u) z +

�
1+ u2

� z2
2

�
:

The expected value �n can be computed as

�n =
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

=
[zn]

�
z + z2

�
exp(2z + z2)

[zn] exp(2z + z2)
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(l,r)=(2,2)

The asymptotic formula for the coe¢ cients of the formula
exp(2z + z2) can also be computed by computer :

[zn] exp(2z+z2) �
�
2e
n

� n
2 exp

�p
2n � 1

2

�
p
4n�

 
1+

p
2

3
p
n
+ O(n�1)

!
Thus

�n =
[zn]

�
z + z2

�
exp(2z + z2)

[zn] exp(2z + z2)

=
[zn�1] exp(2z + z2) + [zn�2] exp(2z + z2)

[zn] exp(2z + z2)

� 1
2
n + O

�
n�1
�
:
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(l,r)=(2,2)

And

�2n =
[zn] @

2

@u2A(z ; u)ju=1
[zn]A(z ; 1)

+
@
@uA(z ; u)ju=1
[zn]A(z ; 1)

�
 
[zn] @@uA(z ; u)ju=1
[zn]A(z ; 1)

!2
=

[zn�4] exp(2z + z2)
[zn] exp(2z + z2)

+ 2 � [z
n�3] exp(2z + z2)
[zn] exp(2z + z2)

+2
[zn�2] exp(2z + z2)
[zn] exp(2z + z2)

+ �n � (�n)2

� 1
2
n �

p
2n
4

+ O (1) :
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(l,r)=(2,2)

In this case,
h0n (1) � �n;

and
h0n (1) + h

00
n (1) � �2n !1 as n!1:

Similarly,by Cauchy coe¢ cient integral, we will have

h000n (u)

(h0n (1) + h00n (1))
3
2

! 0 as n!1:
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(l,r)=(2,2)

Theorem

On S2;2n+1;the leading statistics

Xn = �1 � 1

has the mean �n � n
2 and the variance �

2
n � 1

2n �
p
2n
4 ; and it

admits a limit Gaussian law.
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l

�gure 3 : (; r) = (2; 2) ; n = 10000; centered at its peak.

43 / 1



Conclusion and Further Discussion

General cases, such like S2;3n+1:

The distribution of the second statistics, the third statistics,
etc.
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Final

Thank you for your attention!!
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