DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

王偉名 Wei-Ming Wang

Department of Mathematical Sciences, National Chengchi University

August 2, 2014

2 DUCCI SEQUENCES

- **2** DUCCI SEQUENCES
- **3** SIMILAR CYCLES

- **2** DUCCI SEQUENCES
- **3** SIMILAR CYCLES
- **4** DIFFY HEXAGONS

- **2** DUCCI SEQUENCES
- **3** SIMILAR CYCLES
- **4** DIFFY HEXAGONS

INTRODUCTION

The Diffy Hexagons which are generalized Diffy Boxes are games with the following procedures:

Arrange six nonnegative integers around a regular hexagon.

Produce another regular hexagon of six nonnegative integers from the one obtained in Step 1:

INTRODUCTION	Ducci Sequences	DIFFY HEXAGONS	
Step 2-1			

For each adjacent pair of numbers, compute the absolute value of their difference and place it between them.

INTRODUCTION	Ducci Sequences	Diffy Hexagons	
Step 2-1			

Remove the original numbers.

Remove the original regular hexagon.

Form the new regular hexagon with the remaining numbers.

To obtain a sequence of regular hexagons of six nonnegative integers by performing Step 2 over and over.

Without loss of generality, we denote a regular hexagon of six nonnegative integers as follows:

where $b_i = |a_i - a_{i+1}|$, $c_i = |b_i - b_{i+1}|$, $b_6 = |a_6 - a_1|$, and $c_6 = |b_6 - b_1|$, $i = 1, 2, \cdots, 5$.

From now on, let N be a positive integer with $N\geq 2$

From now on, let N be a positive integer with $N \ge 2$ and denote the set of all N-tuples of nonnegative integers by A_N .

From now on, let N be a positive integer with $N \ge 2$ and denote the set of all N-tuples of nonnegative integers by A_N . Define $D: A_N \to A_N$ by

$$D(a_1, a_2, \cdots, a_N) = (|a_1 - a_2|, \cdots, |a_{N-1} - a_N|, |a_N - a_1|)$$

for all $(a_1, a_2, \cdots, a_N) \in A_N$.

From now on, let N be a positive integer with $N \ge 2$ and denote the set of all N-tuples of nonnegative integers by A_N . Define $D: A_N \to A_N$ by

$$D(a_1, a_2, \cdots, a_N) = (|a_1 - a_2|, \cdots, |a_{N-1} - a_N|, |a_N - a_1|)$$

for all $(a_1, a_2, \cdots, a_N) \in A_N$. Then, D is a well-defined function.

Ducci processes

Definition (1.1)

The function $D: A_N \to A_N$ defined by

$$D(a_1, a_2, \cdots, a_N) = (|a_1 - a_2|, \cdots, |a_{N-1} - a_N|, |a_N - a_1|)$$

for all $(a_1, a_2, \cdots, a_N) \in A_N$ is called a *Ducci process*.

Ducci sequences of N-tuples in A_N

Definition (1.2)

Let $\vec{a} = (a_1, a_2, \cdots, a_N) \in A_N$. A sequence of the form that $\vec{a}, D(\vec{a}), D^2(\vec{a}), \cdots$ is called the *Ducci sequence of* \vec{a} .

Ducci sequences of N-tuples in A_N

Definition (1.2)

Let $\vec{a} = (a_1, a_2, \cdots, a_N) \in A_N$. A sequence of the form that $\vec{a}, D(\vec{a}), D^2(\vec{a}), \cdots$ is called the *Ducci sequence of* \vec{a} . On the other hand, we denote \vec{a} by $D^0(\vec{a})$.

Diffy Hexagon games

Remark (1.3)

Note that a 6-tuple of nonnegative integers is regarded as written in a regular hexagon, and hence a Ducci sequence of 6-tuples in A_6 is regarded as a sequence of regular hexagons, that is, a Diffy Hexagon game.

$$a_{2} \langle a_{3} a_{4} a_{4} \rangle a_{5} b_{2} \langle b_{3} b_{4} \rangle a_{5} c_{1} \langle c_{2} c_{3} c_{4} \rangle c_{1} \langle c_{2} c_{3} c_{4} \rangle c_{5}$$

$$D(a_1, a_2, \cdots, a_6) = (b_1, b_2, \cdots, b_6)$$

$$D(b_1, b_2, \cdots, b_6) = (c_1, c_2, \cdots, c_6)$$

DUCCI SEQUENCES

Existence of the period of Ducci sequences

Lemma (2.1)

Let $\vec{a} \in A_N$. Then, there are nonnegative integers n, k with n > k such that $D^n(\vec{a}) = D^k(\vec{a})$.

Existence of the period of Ducci sequences

Lemma (2.1)

Let $\vec{a} \in A_N$. Then, there are nonnegative integers n, k with n > k such that $D^n(\vec{a}) = D^k(\vec{a})$.

Proof

Example

$$\vec{a} = (1, 0, 0, 2, 1, 0)$$
$$D(\vec{a}) = (1, 0, 2, 1, 1, 1)$$
$$D^{2}(\vec{a}) = (1, 2, 1, 0, 0, 0)$$
$$D^{3}(\vec{a}) = (1, 1, 1, 0, 0, 1)$$
$$D^{4}(\vec{a}) = (0, 0, 1, 0, 1, 0)$$
$$D^{5}(\vec{a}) = (0, 1, 1, 1, 1, 0)$$

$$D^{6}(\vec{a}) = (1, 0, 0, 0, 1, 0)$$
$$D^{7}(\vec{a}) = (1, 0, 0, 1, 1, 1)$$
$$D^{8}(\vec{a}) = (1, 0, 1, 0, 0, 0)$$
$$D^{9}(\vec{a}) = (1, 1, 1, 0, 0, 1)$$
$$= D^{3}(\vec{a})$$

The period and cycle of Ducci sequences

Definition (2.2)

Let $\vec{a} \in A_N$. Suppose that n is the positive integer such that $\vec{a}, D(\vec{a}), D^2(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct and $D^n(\vec{a}) = D^k(\vec{a})$, where $0 \le k \le n-1$.

The period and cycle of Ducci sequences

Definition (2.2)

Let $\vec{a} \in A_N$. Suppose that n is the positive integer such that $\vec{a}, D(\vec{a}), D^2(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct and $D^n(\vec{a}) = D^k(\vec{a})$, where $0 \le k \le n-1$. We define the *period of* \vec{a} to be n-k

The period and cycle of Ducci sequences

Definition (2.2)

Let $\vec{a} \in A_N$. Suppose that n is the positive integer such that $\vec{a}, D(\vec{a}), D^2(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct and $D^n(\vec{a}) = D^k(\vec{a})$, where $0 \le k \le n-1$. We define the *period of* \vec{a} to be n-k and the (n-k)-cycle of \vec{a} (or simply the cycle of \vec{a}) to be $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$.

The largest component of N-tuples in A_N

Definition (2.3)

Let $\vec{a} \in A_N$. The the largest component of \vec{a} is denoted by $\max \vec{a}$.

A property about the largest component of N-tuples in A_N

Lemma (2.5)

Let $\vec{a} \in A_N$. For all nonnegative integers r, s with $r \ge s$, then we have $\max D^r(\vec{a}) \le \max D^s(\vec{a})$.

A property about the largest component of N-tuples in A_N

Lemma (2.5)

Let $\vec{a} \in A_N$. For all nonnegative integers r, s with $r \ge s$, then we have $\max D^r(\vec{a}) \le \max D^s(\vec{a})$.

Example	
$\vec{a} = (1, 0, 0, 2, 1, 0)$	$\max \vec{a} = 2$
$D(\vec{a}) = (1, 0, 2, 1, 1, 1)$	$\max D(\vec{a}) = 2$
$D^2(\vec{a}) = (1, 2, 1, 0, 0, 0)$	$\max D^2(\vec{a}) = 2$
$D^3(\vec{a}) = (1, 1, 1, 0, 0, 1)$	$\max D^3(\vec{a}) = 1$
$D^4(\vec{a}) = (0, 0, 1, 0, 1, 0)$	$\max D^4(\vec{a}) = 1$

The largest component of *N*-tuples in the cycle

Lemma (2.6)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then,

$$\max D^{r}(\vec{a}) = \max D^{s}(\vec{a}), \forall k \le r, s \le n-1.$$

The largest component of *N*-tuples in the cycle

Lemma (2.6)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then,

$$\max D^{r}(\vec{a}) = \max D^{s}(\vec{a}), \forall k \le r, s \le n-1.$$

Proof

Example $\vec{a} = (0, 1, 2, 2, 1, 0)$ $D^3(\vec{a}) = (1, 0, 1, 1, 0, 1)$ $D(\vec{a}) = (1, 1, 0, 1, 1, 0)$ $D^4(\vec{a}) = (1, 1, 0, 1, 1, 0)$ $D^2(\vec{a}) = (0, 1, 1, 0, 1, 1)$ $= D(\vec{a})$
Theorem (2.12)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} .

Theorem (2.12)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \dots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then, the components of $D^i(\vec{a})$ are all equal to either 0 or M for each $i = k, k+1, \dots, n-1$, where $M = \max D^k(\vec{a})$.

Proof

Theorem (2.12)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \dots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then, the components of $D^i(\vec{a})$ are all equal to either 0 or M for each $i = k, k+1, \dots, n-1$, where $M = \max D^k(\vec{a})$.

Proof

Example

 $\vec{a} = (0, 2, 4, 4, 2, 0)$ $D(\vec{a}) = (2, 2, 0, 2, 2, 0)$ $D^2(\vec{a}) = (0, 2, 2, 0, 2, 2)$ $D^{3}(\vec{a}) = (2, 0, 2, 2, 0, 2)$ $D^{4}(\vec{a}) = (2, 2, 0, 2, 2, 0)$ $= D(\vec{a})$

Remark (2.13)

If $N \neq 2$, then there are $\vec{a}, \vec{b} \in A_N$ with $D(\vec{a}) = \vec{b}$ such that

 $\max \vec{a} = \max \vec{b} = M$

Remark (2.13)

If $N \neq 2$, then there are $\vec{a}, \vec{b} \in A_N$ with $D(\vec{a}) = \vec{b}$ such that

$$\max \vec{a} = \max \vec{b} = M$$

and the components of \vec{a} , \vec{b} aren't all equal to either 0 or M.

Proof

Remark (2.13)

If
$$N \neq 2$$
, then there are $\vec{a}, \vec{b} \in A_N$ with $D(\vec{a}) = \vec{b}$ such that

$$\max \vec{a} = \max \vec{b} = M$$

and the components of \vec{a} , \vec{b} aren't all equal to either 0 or M.

Proof

Example

Let
$$N = 6$$
, $\vec{a} = (2014, 0, 1, 1, 1, 1)$ and $D(\vec{a}) = \vec{b}$

Remark (2.13)

If $N \neq 2$, then there are $\vec{a}, \vec{b} \in A_N$ with $D(\vec{a}) = \vec{b}$ such that

$$\max \vec{a} = \max \vec{b} = M$$

and the components of \vec{a} , \vec{b} aren't all equal to either 0 or M.

Proof

Example

Let
$$N = 6$$
, $\vec{a} = (2014, 0, 1, 1, 1, 1)$ and $D(\vec{a}) = \vec{b}$
Then, $\vec{b} = (2014, 1, 0, 0, 0, 2013)$

The greatest common divisor of components of $N\mbox{-tuples}$ in A_N

Definition (2.14)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

The greatest common divisor of components of $N\mbox{-tuples}$ in A_N

Definition (2.14)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. If $\vec{a} = (a_1, a_2, \cdots, a_N)$, then $gcd \vec{a}$ is the number $gcd(a_1, a_2, \cdots, a_N)$.

Lemma (2.15)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$ and n be a nonnegative integer. Then, we obtain that $gcd \vec{a} \mid max D^n(\vec{a})$.

Proof

Lemma (2.15)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$ and n be a nonnegative integer. Then, we obtain that $gcd \vec{a} \mid max D^n(\vec{a})$.

Proof

Example

Let
$$\vec{a} = (0, 2, 4, 4, 2, 0)$$

Lemma (2.15)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$ and n be a nonnegative integer. Then, we obtain that $gcd \vec{a} \mid max D^n(\vec{a})$.

Proof

Example

Let
$$\vec{a} = (0, 2, 4, 4, 2, 0)$$

 $\implies \gcd(\vec{a}) = 2$

Lemma (2.15)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$ and n be a nonnegative integer. Then, we obtain that $gcd \vec{a} \mid max D^n(\vec{a})$.

Proof

Example Let $\vec{a} = (0, 2, 4, 4, 2, 0)$ $\implies \gcd(\vec{a}) = 2$ $D^3(\vec{a}) = (2, 0, 2, 2, 0, 2)$ $D^4(\vec{a}) = (2, 2, 0, 2, 2, 0)$ $D^2(\vec{a}) = (0, 2, 2, 0, 2, 2)$ $D^3(\vec{a}) = (2, 0, 2, 2, 0, 2)$ $D^4(\vec{a}) = (2, 2, 0, 2, 2, 0)$ $D^2(\vec{a}) = (0, 2, 2, 0, 2, 2)$

Corollary (2.16)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} .

Corollary (2.16)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \dots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then, the components of $D^i(\vec{a})$ are all equal to either 0 or M for each $i = k, k+1, \dots, n-1$, where M is a multiple of $\gcd \vec{a}$.

Proof

In Corollary 2.16, M may be any nonnegative integer

Example (2.17)

Let $d = \gcd \vec{a}, K \ge 1$ be integers and $\vec{a} = (d, d, d, d, d, Kd) \in A_6$.

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

In Corollary 2.16, M may be any nonnegative integer

Example (2.17)

Let $d = \gcd \vec{a}, K \ge 1$ be integers and $\vec{a} = (d, d, d, d, d, Kd) \in A_6$. $D(\vec{a}) = (0, 0, 0, 0, (K-1)d, (K-1)d)$ $D^{2}(\vec{a}) = (0, 0, 0, (K-1)d, 0, (K-1)d)$ $D^{3}(\vec{a}) = (0, 0, (K-1)d, (K-1)d, (K-1)d, (K-1)d)$ $D^{4}(\vec{a}) = (0, (K-1)d, 0, 0, 0, (K-1)d)$ $D^{5}(\vec{a}) = ((K-1)d, (K-1)d, 0, 0, (K-1)d, (K-1)d)$ $D^{6}(\vec{a}) = (0, (K-1)d, 0, (K-1)d, 0, 0)$ $D^{7}(\vec{a}) = ((K-1)d, (K-1)d, (K-1)d, (K-1)d, (K-1)d, 0, 0)$ $D^{8}(\vec{a}) = (0, 0, 0, (K-1)d, 0, (K-1)d) = D^{2}(\vec{a})$ M = (K - 1)d

SIMILAR CYCLES

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Similar cycles

Definition (3.1)

Let $\vec{a} \in A_N$ and $\vec{b} \in (\mathbb{Z}_2)^N$. Suppose that $D^k(\vec{b}), D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ is the (n-k)-cycle of \vec{b} .

Similar cycles

Definition (3.1)

Let $\vec{a} \in A_N$ and $\vec{b} \in (\mathbb{Z}_2)^N$. Suppose that $D^k(\vec{b}), D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ is the (n-k)-cycle of \vec{b} . The cycle of \vec{a} is said to be *similar to the cycle of* \vec{b} ,

Similar cycles

Definition (3.1)

Let $\vec{a} \in A_N$ and $\vec{b} \in (\mathbb{Z}_2)^N$. Suppose that $D^k(\vec{b}), D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ is the (n-k)-cycle of \vec{b} . The cycle of \vec{a} is said to be *similar to the cycle of* \vec{b} , if $\exists m \in \mathbb{N}$ such that $D^r(\vec{a}) = mD^s(\vec{b})$, where r, s are nonnegative integers with $k \leq s \leq n-1$.

The period of similar cycles

Theorem (3.2)

Let $\vec{a} \in A_N$. Then, the cycle of \vec{a} is similar to the cycle of \vec{b} , where $\vec{b} \in (\mathbb{Z}_2)^N$ and the period of \vec{b} is equal to the period of \vec{a} .

Proof

The period of similar cycles

Theorem (3.2)

Let $\vec{a} \in A_N$. Then, the cycle of \vec{a} is similar to the cycle of \vec{b} , where $\vec{b} \in (\mathbb{Z}_2)^N$ and the period of \vec{b} is equal to the period of \vec{a} .

Proof

Example $\vec{a} = (0, 2, 4, 4, 2, 0)$ $\vec{b} = (0, 1, 0, 0, 1, 0)$ $D(\vec{a}) = (2, 2, 0, 2, 2, 0)$ $D(\vec{b}) = (1, 1, 0, 1, 1, 0)$ $D^2(\vec{a}) = (0, 2, 2, 0, 2, 2)$ $D^2(\vec{b}) = (0, 1, 1, 0, 1, 1)$ $D^3(\vec{a}) = (2, 0, 2, 2, 0, 2)$ $D^3(\vec{b}) = (1, 0, 1, 1, 0, 1)$ $D^4(\vec{a}) = (2, 2, 0, 2, 2, 0)$ $D^4(\vec{b}) = (1, 1, 0, 1, 1, 0)$ $= D(\vec{a})$ $= D(\vec{b})$

Cycles of N-tuples in A_N

Remark (3.3)

When we discuss cycles of *N*-tuples in A_N , it is enough to cope with *N*-tuples in $(\mathbb{Z}_2)^N$ according to Theorem 3.2.

Theorem (3.13)

Let $\vec{e}_i = (\delta_{i1}, \delta_{i2}, \cdots, \delta_{iN}) \in A_N$, where δ_{ij} is the Kronecker delta for all $i, j \in \{1, 2, \cdots, N\}$.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Periods of \overline{N} -tuples in A_N

Theorem (3.13)

Let $\vec{e}_i = (\delta_{i1}, \delta_{i2}, \cdots, \delta_{iN}) \in A_N$, where δ_{ij} is the Kronecker delta for all $i, j \in \{1, 2, \cdots, N\}$. Then, we have: (a) If $D^r(\vec{e}_1) = D^s(\vec{e}_1)$ for some nonnegative integers r, s

Theorem (3.13)

Let $\vec{e}_i = (\delta_{i1}, \delta_{i2}, \dots, \delta_{iN}) \in A_N$, where δ_{ij} is the Kronecker delta for all $i, j \in \{1, 2, \dots, N\}$. Then, we have: (a) If $D^r(\vec{e}_1) = D^s(\vec{e}_1)$ for some nonnegative integers

r, s, then we have: $D^r(\vec{b}) = D^s(\vec{b}), \forall \vec{b} \in (\mathbb{Z}_2)^N$.

Theorem (3.13)

Let $\vec{e}_i = (\delta_{i1}, \delta_{i2}, \cdots, \delta_{iN}) \in A_N$, where δ_{ij} is the Kronecker delta for all $i, j \in \{1, 2, \cdots, N\}$. Then, we have: (a) If $D^r(\vec{e}_1) = D^s(\vec{e}_1)$ for some nonnegative integers r, s, then we have: $D^r(\vec{b}) = D^s(\vec{b}), \forall \vec{b} \in (\mathbb{Z}_2)^N$. (b) The period of $\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_N$ are all identical.

Theorem (3.13)

Let $\vec{e}_i = (\delta_{i1}, \delta_{i2}, \cdots, \delta_{iN}) \in A_N$, where δ_{ij} is the Kronecker delta for all $i, j \in \{1, 2, \cdots, N\}$. Then, we have: (a) If $D^r(\vec{e}_1) = D^s(\vec{e}_1)$ for some nonnegative integers r, s, then we have: $D^r(\vec{b}) = D^s(\vec{b}), \forall \vec{b} \in (\mathbb{Z}_2)^N$. (b) The period of $\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_N$ are all identical. (c) If $\vec{a} \in A_N$, then the period of \vec{a} divides the period of \vec{e}_1 .

Theorem (3.13)

Let $\vec{e}_i = (\delta_{i1}, \delta_{i2}, \dots, \delta_{iN}) \in A_N$, where δ_{ij} is the Kronecker delta for all $i, j \in \{1, 2, \dots, N\}$. Then, we have:

- (a) If $D^r(\vec{e}_1) = D^s(\vec{e}_1)$ for some nonnegative integers r, s, then we have: $D^r(\vec{b}) = D^s(\vec{b}), \forall \vec{b} \in (\mathbb{Z}_2)^N$.
- (b) The period of $\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_N$ are all identical.
- (c) If $\vec{a} \in A_N$, then the period of \vec{a} divides the period of \vec{e}_1 . In particular, the maximal period of *N*-tuples in A_N is equal to the period of \vec{e}_1 .

Proof

Cycles of 2^r -tuples in A_{2^r}

Theorem (3.15)

Let r be a positive integer. Suppose that $N = 2^r$.

Cycles of 2^r -tuples in A_{2^r}

Theorem (3.15)

Let r be a positive integer. Suppose that $N = 2^r$. If $\vec{a} \in A_N$, then the cycle of \vec{a} is similar to the 1-cycle of $\vec{0}$.

Proof

Cycles of 2^r -tuples in A_{2^r}

Theorem (3.15)

Let r be a positive integer. Suppose that $N = 2^r$. If $\vec{a} \in A_N$, then the cycle of \vec{a} is similar to the 1-cycle of $\vec{0}$.

Proof

Example

$$\vec{a} = (0, 1, 2, 0)$$

 $D(\vec{a}) = (1, 1, 2, 0)$
 $D^2(\vec{a}) = (0, 1, 2, 1)$
 $D^3(\vec{a}) = (1, 1, 1, 1)$

$$D^{4}(\vec{a}) = (0, 0, 0, 0)$$
$$D^{5}(\vec{a}) = (0, 0, 0, 0)$$
$$= D^{4}(\vec{a})$$

DIFFY HEXAGONS

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Introduction

According to Remark 1.3, we shall concentrate on the cycles of 6-tuples in ${\cal A}_6$ in this chapter.

The period of 6-tuples in A_6

Theorem (4.1)

The period of 6-tuples in A_6 divides 6.
The period of 6-tuples in A_6

Theorem (4.1)

The period of 6-tuples in A_6 divides 6. In particular, the maximal period of 6-tuples in A_6 is equal to 6.

Proof

The period of 6-tuples in A_6

Theorem (4.1)

The period of 6-tuples in A_6 divides 6. In particular, the maximal period of 6-tuples in A_6 is equal to 6.

Proof

Example

 $\vec{e}_1 = (1, 0, 0, 0, 0, 0)$ $D(\vec{e}_1) = (1, 0, 0, 0, 0, 1)$ $D^2(\vec{e}_1) = (1, 0, 0, 0, 1, 0)$ $D^3(\vec{e}_1) = (1, 0, 0, 1, 1, 1)$ $D^4(\vec{e}_1) = (1, 0, 1, 0, 0, 0)$

 $D^{5}(\vec{e}_{1}) = (1, 1, 1, 0, 0, 1)$ $D^{6}(\vec{e}_{1}) = (0, 0, 1, 0, 1, 0)$ $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

Lemma (4.2)

If $ec{b} \in (\mathbb{Z}_2)^6$, then the cycle of $ec{b}$ is one of the followings:

Lemma (4.2)

If $ec{b} \in (\mathbb{Z}_2)^6$, then the cycle of $ec{b}$ is one of the followings:

(i) (1-cycle) (0, 0, 0, 0, 0, 0)

Lemma (4.2)

If $ec{b} \in (\mathbb{Z}_2)^6$, then the cycle of $ec{b}$ is one of the followings:

(i) (1-cycle) (0, 0, 0, 0, 0, 0) (0, 1, 0, 1, 0, 1) (1, 0, 1, 0, 1, 0) (1, 1, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0) (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1) (1, 2, 1, 0, 1, 0, 1, 0) (1, 1, 1, 1, 1, 1, 1) (1, 2, 1, 0, 1, 0, 1, 0)(1, 2, 1, 0, 1, 0, 1, 0, 1, 0)

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple $(a_1, a_2, a_3, a_4, a_5, a_6)$ in A_6 is regarded as written in a regular hexagon.

Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple $(a_1, a_2, a_3, a_4, a_5, a_6)$ in A_6 is regarded as written in a regular hexagon.

However, regular hexagons have symmetries under rotations and reflections,

Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple $(a_1, a_2, a_3, a_4, a_5, a_6)$ in A_6 is regarded as written in a regular hexagon.

However, regular hexagons have symmetries under rotations and reflections, but $(a_1, a_2, a_3, a_4, a_5, a_6)$ does not.

 $\begin{array}{l} \mbox{Write } \mathcal{D}_6 = \{(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25) \\ (36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45), \\ (2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)\} \end{array}$

 $\begin{array}{l} \mbox{Write } \mathcal{D}_6 = \{(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25) \\ (36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45), \\ (2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)\} \mbox{ which is the} \\ \mbox{permutation group corresponding to all possible rotations and} \\ \mbox{reflections of the regular hexagon.} \end{array}$

 $\begin{array}{l} \mbox{Write } \mathcal{D}_6 = \{(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25) \\ (36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45), \\ (2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)\} \mbox{ which is the} \\ \mbox{permutation group corresponding to all possible rotations and} \\ \mbox{reflections of the regular hexagon.} \end{array}$

Define $*: \mathcal{D}_6 \times A_6 \to A_6$ by

$$\pi * (a_1, a_2, \cdots, a_6) = (a_{\pi(1)}, a_{\pi(2)}, \cdots, a_{\pi(6)})$$

for all $\pi \in \mathcal{D}_6$ and $(a_1, a_2, \cdots, a_6) \in A_6$.

Define $*: \mathcal{D}_6 \times A_6 \to A_6$ by

$$\pi * (a_1, a_2, \cdots, a_6) = (a_{\pi(1)}, a_{\pi(2)}, \cdots, a_{\pi(6)})$$

for all $\pi \in \mathcal{D}_6$ and $(a_1, a_2, \cdots, a_6) \in A_6$. Clearly, * is well-defined.

Define $*: \mathcal{D}_6 \times A_6 \to A_6$ by

$$\pi * (a_1, a_2, \cdots, a_6) = (a_{\pi(1)}, a_{\pi(2)}, \cdots, a_{\pi(6)})$$

for all $\pi \in \mathcal{D}_6$ and $(a_1, a_2, \cdots, a_6) \in A_6$. Clearly, * is well-defined.

Lemma (4.4)

* is a left group action of \mathcal{D}_6 on A_6 .

Proof

For all $\vec{x}, \vec{y} \in A_6$, define $\vec{x} \equiv \vec{y}$ by $\vec{x} = \pi * \vec{y}$ for some $\pi \in \mathcal{D}_6$.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

For all $\vec{x}, \vec{y} \in A_6$, define $\vec{x} \equiv \vec{y}$ by $\vec{x} = \pi * \vec{y}$ for some $\pi \in \mathcal{D}_6$. Then, \equiv is the equivalence relation on A_6 induced by \mathcal{D}_6 and

For all $\vec{x}, \vec{y} \in A_6$, define $\vec{x} \equiv \vec{y}$ by $\vec{x} = \pi * \vec{y}$ for some $\pi \in \mathcal{D}_6$. Then, \equiv is the equivalence relation on A_6 induced by \mathcal{D}_6 and we denote an equivalence class of A_6 by $[(a_1, a_2, \cdots, a_6)]$, where $(a_1, a_2, \cdots, a_6) \in A_6$.

For all $\vec{x}, \vec{y} \in A_6$, define $\vec{x} \equiv \vec{y}$ by $\vec{x} = \pi * \vec{y}$ for some $\pi \in \mathcal{D}_6$. Then, \equiv is the equivalence relation on A_6 induced by \mathcal{D}_6 and we denote an equivalence class of A_6 by $[(a_1, a_2, \cdots, a_6)]$, where $(a_1, a_2, \cdots, a_6) \in A_6$. From now on, we identify two 6-tuples \vec{x}, \vec{y} in A_6 , written by $\vec{x} = \vec{y}$, if and only if $\vec{x} \equiv \vec{y}$.

Remark (4.5)

In our identification, we observe that:

(a) If
$$\vec{a}, \vec{b} \in A_6$$
, then $\vec{a} = \vec{b}$ if and only if $[\vec{a}] = [\vec{b}]$

Remark (4.5)

In our identification, we observe that:

- (a) If $\vec{a}, \vec{b} \in A_6$, then $\vec{a} = \vec{b}$ if and only if $[\vec{a}] = [\vec{b}]$.
- (b) According to Remark 1.3, a sequence of regular hexagons, that is, a Diffy Hexagon game, is actually a Ducci sequence of 6-tuples in A_6 .

Lemma (4.9)

There are 13 equivalence classes of $(\mathbb{Z}_2)^6$.

Lemma (4.9)

There are 13 equivalence classes of $(\mathbb{Z}_2)^6$. In fact, they are: (0,0,0,0,0,0), (0,0,0,1,1,1), (0,0,1,0,0,1), (0,0,1,0,1,1), (0,1,0,1,0,1), (0,1,1,0,1,1), (0,1,1,1,0,1), (0,1,1,1,1,1), (1,0,0,0,0,0), (1,0,0,0,0,1), (1,0,0,0,1,0), (1,0,0,1,1,1), and (1,1,1,1,1).

Proof

Lemma (4.9)

There are 13 equivalence classes of $(\mathbb{Z}_2)^6$. In fact, they are: (0,0,0,0,0,0), (0,0,0,1,1,1), (0,0,1,0,0,1), (0,0,1,0,1,1), (0,1,0,1,0,1), (0,1,1,0,1,1), (0,1,1,1,0,1), (0,1,1,1,1,1), (1,0,0,0,0,0), (1,0,0,0,0,1), (1,0,0,0,1,0), (1,0,0,1,1,1), and (1,1,1,1,1,1).

Proof

Theorem (4.10)

Let $\vec{b} \in (\mathbb{Z}_2)^6$. Then, the cycle of \vec{b} is one of the followings:

(i) (1-cycle) (0, 0, 0, 0, 0, 0)

$$(0, 0, 0, 0, 0, 0)$$

 t
 \rightarrow : a Ducci process

Theorem (4.10)

Let $\vec{b} \in (\mathbb{Z}_2)^6$. Then, the cycle of \vec{b} is one of the followings:

```
(i) (1-cycle) (0, 0, 0, 0, 0, 0)
    (0, 1, 0, 1, 0, 1)
    (1, 1, 1, 1, 1, 1)
  (0, 0, 0, 0, 0, 0)
\rightarrow: a Ducci process
```

Theorem (4.10)

(ii) (1-cycle) (0, 1, 1, 0, 1, 1)

(0, 1, 1, 0, 1, 1) \checkmark \rightarrow : a Ducci process

Theorem (4.10)

```
(ii) (1-cycle) (0, 1, 1, 0, 1, 1)
    (0, 0, 0, 1, 1, 1)
    (0, 0, 1, 0, 0, 1)
   (0, 1, 1, 0, 1, 1)
 \rightarrow: a Ducci process
```

Theorem (4.10)

(iii) (2-cycle) (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0)

 \rightarrow : a Ducci process

The period of Diffy Hexagons

Theorem (4.12)

Let $\vec{e}_1 = (1, 0, 0, 0, 0, 0) \in A_6$. If r is a positive integer, then r is the period of \vec{a} for some $\vec{a} \in A_6$ if and only if r divides the period of \vec{e}_1 .

Proof
THANK YOU

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

APPENDIX

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

INTRODUCTION

Proof for Lemma 2.1

Proof.

Write
$$\vec{a} = (a_1, a_2, \cdots, a_N)$$

Let $M = \max\{a_1, a_2, \cdots, a_N\}$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Proof.

Write
$$\vec{a} = (a_1, a_2, \cdots, a_N)$$

Let $M = \max\{a_1, a_2, \cdots, a_N\}$

 $\implies \text{There are at most } (M+1)^N \text{ different N-tuples which are obtained by performing Ducci processes on } \vec{a}$

Proof.

Write
$$\vec{a} = (a_1, a_2, \cdots, a_N)$$

Let $M = \max\{a_1, a_2, \cdots, a_N\}$

 \implies There are at most $(M+1)^N$ different N-tuples which are obtained by performing Ducci processes on \vec{a} , and hence there are nonnegative integers n, k with n > k such that $D^n(\vec{a}) = D^k(\vec{a})$

INTRODUCTION

Proof for Remark 2.4

Proof.

Note that $-M \leq x - y \leq M$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

INTRODUCTION

Similar Cycles

DIFFY HEXAGO

Appendix

Proof for Remark 2.4

Remark 2.4

Proof.

Note that $-M \leq x - y \leq M$, then we obtain $|x - y| \leq M$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

Given nonnegative integers r, s with $r \ge s$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Proof.

Given nonnegative integers r,s with $r\geq s$

If r = s, there is nothing to prove

Proof.

Given nonnegative integers r, s with $r \ge s$ If r = s, there is nothing to prove Now, we may assume that r > s

Proof.

Given nonnegative integers r, s with $r \ge s$ If r = s, there is nothing to prove Now, we may assume that r > sIt suffices to show that $\max D^{s+1}(\vec{a}) \le \max D^s(\vec{a})$:

Lemma 2.5

Proof.

Given nonnegative integers r, s with $r \ge s$ If r = s, there is nothing to prove Now, we may assume that r > sIt suffices to show that $\max D^{s+1}(\vec{a}) \le \max D^s(\vec{a})$: Write $D^s(\vec{a}) = (x_1, x_2, \cdots, x_N)$ and $D^{s+1}(\vec{a}) = (y_1, y_2, \cdots, y_N)$, where

$$y_1 = |x_1 - x_2|, \cdots, y_{N-1} = |x_{N-1} - x_N|, y_N = |x_N - x_1|$$

Lemma 2.5

Proof.

Given nonnegative integers r, s with $r \ge s$ If r = s, there is nothing to prove Now, we may assume that r > sIt suffices to show that $\max D^{s+1}(\vec{a}) \le \max D^s(\vec{a})$: Write $D^s(\vec{a}) = (x_1, x_2, \cdots, x_N)$ and $D^{s+1}(\vec{a}) = (y_1, y_2, \cdots, y_N)$, where

$$y_1 = |x_1 - x_2|, \cdots, y_{N-1} = |x_{N-1} - x_N|, y_N = |x_N - x_1|$$

 $\therefore 0 \le x_1, x_2, \cdots, x_N \le \max D^s(\vec{a})$

Lemma 2.5

Proof.

Given nonnegative integers r, s with $r \ge s$ If r = s, there is nothing to prove Now, we may assume that r > sIt suffices to show that $\max D^{s+1}(\vec{a}) \le \max D^s(\vec{a})$: Write $D^s(\vec{a}) = (x_1, x_2, \cdots, x_N)$ and $D^{s+1}(\vec{a}) = (y_1, y_2, \cdots, y_N)$, where

$$y_1 = |x_1 - x_2|, \cdots, y_{N-1} = |x_{N-1} - x_N|, y_N = |x_N - x_1|$$

 $\therefore 0 \le x_1, x_2, \cdots, x_N \le \max D^s(\vec{a})$ $\therefore \text{ By Remark 2.4, } y_i \le \max D^s(\vec{a}) \text{ for all } i = 1, 2, \cdots, N$

Lemma 2.5

Proof.

Given nonnegative integers r, s with $r \ge s$ If r = s, there is nothing to prove Now, we may assume that r > sIt suffices to show that $\max D^{s+1}(\vec{a}) \le \max D^s(\vec{a})$: Write $D^s(\vec{a}) = (x_1, x_2, \cdots, x_N)$ and $D^{s+1}(\vec{a}) = (y_1, y_2, \cdots, y_N)$, where

$$y_1 = |x_1 - x_2|, \cdots, y_{N-1} = |x_{N-1} - x_N|, y_N = |x_N - x_1|$$

 $\therefore 0 \le x_1, x_2, \cdots, x_N \le \max D^s(\vec{a})$ $\therefore \text{ By Remark 2.4, } y_i \le \max D^s(\vec{a}) \text{ for all } i = 1, 2, \cdots, N$ $\implies \max D^{s+1}(\vec{a}) \le \max D^s(\vec{a})$

Lemma 2.6

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$

Lemma 2.6

Proof.

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$ If r = s, then it is trivial

Lemma 2.6

Proof.

Given $k \le r, s \le n-1$ We may assume that $r \le s$ If r = s, then it is trivial Suppose r < s, then $\max D^s(\vec{a}) \le \max D^r(\vec{a})$ by Lemma 2.5

Lemma 2.6

Proof.

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$ If r = s, then it is trivial Suppose r < s, then $\max D^s(\vec{a}) \leq \max D^r(\vec{a})$ by Lemma 2.5 Now, look at the Ducci sequence of $D^s(\vec{a})$:

$$D^{s}(\vec{a}), D^{s+1}(\vec{a}), \cdots, D^{n-1}(\vec{a}),$$

 $D^{n}(\vec{a}) = D^{k}(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{r}(\vec{a})$

By Lemma 2.5, we know that

(continued...)

$\max D^{r}(\vec{a}) \leq \max D^{k}(\vec{a}) = \max D^{n}(\vec{a})$ $\leq \max D^{n-1}(\vec{a}) \leq \max D^{s}(\vec{a})$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...)

$$\max D^{r}(\vec{a}) \le \max D^{k}(\vec{a}) = \max D^{n}(\vec{a})$$
$$\le \max D^{n-1}(\vec{a}) \le \max D^{s}(\vec{a})$$

Therefore, $\max D^r(\vec{a}) \leq \max D^s(\vec{a})$

(continued...)

$$\begin{aligned} \max D^r(\vec{a}) &\leq \max D^k(\vec{a}) = \max D^n(\vec{a}) \\ &\leq \max D^{n-1}(\vec{a}) \leq \max D^s(\vec{a}) \end{aligned}$$

Therefore, $\max D^r(\vec{a}) \le \max D^s(\vec{a})$ So, we conclude that $\max D^r(\vec{a}) = \max D^s(\vec{a})$

Proof.

Since |x - y| = M, we obtain $x - y = \pm M$

Proof.

Since |x - y| = M, we obtain $x - y = \pm M$ Case 1: x - y = M

Since
$$|x - y| = M$$
, we obtain $x - y = \pm M$
Case 1: $x - y = M$
 $\implies M + y = x \le M$

Remark 2.7

Since
$$|x - y| = M$$
, we obtain $x - y = \pm M$
Case 1: $x - y = M$
 $\implies M + y = x \le M$
 $\implies y \le 0$

Remark 2.7

Since
$$|x - y| = M$$
, we obtain $x - y = \pm M$
Case 1: $x - y = M$
 $\implies M + y = x \le M$
 $\implies y \le 0$
By assumption, $y \ge 0$

Remark 2.7

Since
$$|x - y| = M$$
, we obtain $x - y = \pm M$
Case 1: $x - y = M$
 $\implies M + y = x \le M$
 $\implies y \le 0$
By assumption, $y \ge 0$
 $\therefore y = 0$

Remark 2.7

Since
$$|x - y| = M$$
, we obtain $x - y = \pm M$
Case 1: $x - y = M$
 $\implies M + y = x \le M$
 $\implies y \le 0$
By assumption, $y \ge 0$
 $\therefore y = 0$
 $\implies x = M$

Remark 2.7

Proof.

Since |x - y| = M, we obtain $x - y = \pm M$ **Case 1:** x - y = M $\implies M + y = x \le M$ $\implies y \le 0$ By assumption, $y \ge 0$ $\therefore y = 0$ $\implies x = M$ Therefore, $x, y \in \{0, M\}$ and at least one of them is M

Remark 2.7

Proof.

Since |x - y| = M, we obtain $x - y = \pm M$ **Case 1:** x - y = M $\implies M + y = x \le M$ $\implies y \le 0$ By assumption, $y \ge 0$ $\therefore y = 0$ $\implies x = M$ Therefore, $x, y \in \{0, M\}$ and at least one of them is M**Case 2:** x - y = -M

Remark 2.7

Proof.

Since |x - y| = M, we obtain $x - y = \pm M$ **Case 1:** x - y = M $\implies M + y = x \le M$ $\implies y \le 0$ By assumption, $y \ge 0$ $\therefore y = 0$ $\implies x = M$ Therefore, $x, y \in \{0, M\}$ and at least one of them is M **Case 2:** x - y = -M $\implies x + M = y \le M$

Remark 2.7

Proof.

Since |x-y| = M, we obtain $x-y = \pm M$ **Case 1:** x - y = M $\implies M + y = x \leq M$ $\implies y \leq 0$ By assumption, $y \ge 0$ $\therefore y = 0$ $\implies x = M$ Therefore, $x, y \in \{0, M\}$ and at least one of them is M **Case 2:** x - y = -M $\implies x + M = y < M$ $\implies x < 0$

Remark 2.7

```
Since |x - y| = M, we obtain x - y = \pm M
Case 1: x - y = M
\implies M + y = x \leq M
\implies y \leq 0
By assumption, y \ge 0
\therefore y = 0
\implies x = M
Therefore, x, y \in \{0, M\} and at least one of them is M
Case 2: x - y = -M
\implies x + M = y < M
\implies x < 0
Note that x \ge 0
```

INTRODUCTION

Proof for Remark 2.7

(continued...)

 $\therefore x = 0$

INTRODUCTION

Proof for Remark 2.7

(continued...)

$$\therefore x = 0 \\ \implies y = M$$
INTRODUCTION

Similar Cycles

DIFFY HEXAGO

Appendix

Proof for Remark 2.7

$$\begin{array}{ll} \therefore x=0\\ \Longrightarrow & y=M\\ \text{Hence, } x,y\in\{0,M\} \text{ and at least one of them is } M\end{array}$$

Proof.

We prove it by induction on *t*:

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

We prove it by induction on t: t=1:

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

We prove it by induction on t: t=1: Note that $M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

We prove it by induction on t: t=1: Note that $M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$ By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M, holds

Lemma 2.8

Proof.

```
We prove it by induction on t:
t=1:
Note that M = a_1 = |b_1 - b_2| and 0 \le b_1, b_2 \le M
By Remark 2.7, b_1, b_2 \in \{0, M\} and at least one of them is M,
holds
Suppose t = 1, 2, \dots, K holds
Then, t = K + 1:
```

Lemma 2.8

Proof.

```
We prove it by induction on t:
t=1:
Note that M = a_1 = |b_1 - b_2| and 0 \le b_1, b_2 \le M
By Remark 2.7, b_1, b_2 \in \{0, M\} and at least one of them is M,
holds
Suppose t = 1, 2, \cdots, K holds
Then. t = K + 1:
By assumption, we have the following four cases:
Case 1: a_1 = M and a_2 = a_3 = \cdots = a_K = a_{K+1} = 0
Case 2: a_{K+1} = M and a_1 = a_2 = a_3 = \cdots = a_K = 0
Case 3: a_1 = a_{K+1} = M and a_2 = a_3 = \cdots = a_K = 0
Case 4: \exists 2 \leq i \leq K such that a_i = M
```

(continued...)

Case 1:
$$a_1 = M$$
 and $a_2 = a_3 = \cdots = a_K = a_{K+1} = 0$

(continued...)

Case 1:
$$a_1 = M$$
 and $a_2 = a_3 = \cdots = a_K = a_{K+1} = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1} = b_{K+2}$, since $D(\vec{b}) = \vec{a}$

Case 1:
$$a_1 = M$$
 and $a_2 = a_3 = \cdots = a_K = a_{K+1} = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1} = b_{K+2}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$

(continued...)

Case 1:
$$a_1 = M$$
 and $a_2 = a_3 = \cdots = a_K = a_{K+1} = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1} = b_{K+2}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$

: By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M

(continued...)

Case 1:
$$a_1 = M$$
 and $a_2 = a_3 = \cdots = a_K = a_{K+1} = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1} = b_{K+2}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$
 \therefore By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M .
Therefore, we obtain

$$b_1, b_2, \cdots, b_K, b_{K+1}, b_{K+2} \in \{0, M\}$$

and at least one of them is M, holds

(continued...)

Case 2:
$$a_{K+1} = M$$
 and $a_1 = a_2 = a_3 = \cdots = a_K = 0$

(continued...)

Case 2:
$$a_{K+1} = M$$
 and $a_1 = a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_1 = b_2 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$

(continued...)

Case 2:
$$a_{K+1} = M$$
 and $a_1 = a_2 = a_3 = \dots = a_K = 0$
 $\implies b_1 = b_2 = \dots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_{K+1} = |b_{K+1} - b_{K+2}|$ and $0 \le b_{K+1}, b_{K+2} \le M$

(continued...)

Case 2: $a_{K+1} = M$ and $a_1 = a_2 = a_3 = \cdots = a_K = 0$ $\implies b_1 = b_2 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$

- $:: M = a_{K+1} = |b_{K+1} b_{K+2}| \text{ and } 0 \le b_{K+1}, b_{K+2} \le M$
- : By Remark 2.7, we obtain $b_{K+1}, b_{K+2} \in \{0, M\}$ and at least one of them is M

Case 2:
$$a_{K+1} = M$$
 and $a_1 = a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_1 = b_2 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_{K+1} = b_{K+1}$, since $D(\vec{b}) = \vec{a}$

- $\therefore M = a_{K+1} = |b_{K+1} b_{K+2}| \text{ and } 0 \le b_{K+1}, b_{K+2} \le M$
- : By Remark 2.7, we obtain $b_{K+1}, b_{K+2} \in \{0, M\}$ and at least one of them is M
- $\implies b_1, b_2, \cdots, b_K, b_{K+1}, b_{K+2} \in \{0, M\}$ and at least one of them is M holds

(continued...)

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$

(continued...)

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$
 \therefore By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\therefore M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$
 \therefore By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M
Note that $M = a_{K+1} = |b_{K+1} - b_{K+2}|$ and $0 \le b_{K+1}, b_{K+2} \le M$

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\because M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$
 \therefore By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M
Note that $M = a_{K+1} = |b_{K+1} - b_{K+2}|$ and $0 \le b_{K+1}, b_{K+2} \le M$
By Remark 2.7, we have $b_{K+1}, b_{K+2} \in \{0, M\}$ and at least one of them is M

(continued...)

Case 3:
$$a_1 = a_{K+1} = M$$
 and $a_2 = a_3 = \cdots = a_K = 0$
 $\implies b_2 = b_3 = \cdots = b_K = b_{K+1}$, since $D(\vec{b}) = \vec{a}$
 $\because M = a_1 = |b_1 - b_2|$ and $0 \le b_1, b_2 \le M$
 \therefore By Remark 2.7, $b_1, b_2 \in \{0, M\}$ and at least one of them is M
Note that $M = a_{K+1} = |b_{K+1} - b_{K+2}|$ and $0 \le b_{K+1}, b_{K+2} \le M$
By Remark 2.7, we have $b_{K+1}, b_{K+2} \in \{0, M\}$ and at least one of them is M
So, we conclude that

$$b_1, b_2, \cdots, b_K, b_{K+1}, b_{K+2} \in \{0, M\}$$

and at least one of them is M, holds

(continued...)

Case 4: $\exists 2 \leq i \leq K$ such that $a_i = M$

(continued...)

Case 4: $\exists 2 \leq i \leq K$ such that $a_i = M$ $\therefore a_1, a_2, \dots, a_i \in \{0, M\}$ and $a_i = M$ with $2 \leq i \leq K$

(continued...)

Case 4: $\exists 2 \leq i \leq K$ such that $a_i = M$ $\therefore a_1, a_2, \cdots, a_i \in \{0, M\}$ and $a_i = M$ with $2 \leq i \leq K$

... By induction hypothesis, $b_1, b_2, \cdots, b_i, b_{i+1} \in \{0, M\}$ and at least one of them is M

(continued...)

Case 4: $\exists 2 \leq i \leq K$ such that $a_i = M$ $\therefore a_1, a_2, \cdots, a_i \in \{0, M\}$ and $a_i = M$ with $2 \le i \le K$ \therefore By induction hypothesis, $b_1, b_2, \dots, b_i, b_{i+1} \in \{0, M\}$ and at least one of them is MNote that $a_i = M, a_{i+1}, \dots, a_{K+1} \in \{0, M\}$ and $2 = (K+1) - (K-1) \le (K+1) - (i-1)$ < (K+1) - (2-1)= K

(continued...)

Since Ducci processes are cyclic,

(continued...)

Since Ducci processes are cyclic, we obtain

$$b_i, b_{i+1}, \cdots, b_K, b_{K+1}, b_{K+2} \in \{0, M\}$$

and at least one of them is M, by induction hypothesis

(continued...)

Since Ducci processes are cyclic, we obtain

$$b_i, b_{i+1}, \cdots, b_K, b_{K+1}, b_{K+2} \in \{0, M\}$$

and at least one of them is $M\!\!\!\!\!\!$, by induction hypothesis Hence, we conclude that

$$b_1, b_2, \cdots, b_i, b_{i+1}, \cdots, b_K, b_{K+1}, b_{K+2} \in \{0, M\}$$

and at least one of them is M, holds

Lemma 2.10

Proof.

We prove it by induction on i:

Proof.

We prove it by induction on i: i = 0:

Lemma 2.10

Proof.

We prove it by induction on i: i=0: By Lemma 2.6, $\max D^{n-1}(\vec{a})=\max D^k(\vec{a})=M$

Lemma 2.10

Proof.

We prove it by induction on i:

i = 0:

By Lemma 2.6, $\max D^{n-1}(\vec{a}) = \max D^k(\vec{a}) = M$

 \implies there is a component of $D^{n-1}(\vec{a})$ is M

Lemma 2.10

Proof.

We prove it by induction on i:

i = 0:

By Lemma 2.6, $\max D^{n-1}(\vec{a}) = \max D^k(\vec{a}) = M$

 \implies there is a component of $D^{n-1}(\vec{a})$ is M

 \implies there is one cyclic consecutive component of $D^{n-1}(\vec{a})$ which is taken from 0

or M such that at least one of them is M, holds
Lemma 2.10

Proof.

We prove it by induction on i:

i = 0:

By Lemma 2.6, $\max D^{n-1}(\vec{a}) = \max D^k(\vec{a}) = M$

 \implies there is a component of $D^{n-1}(\vec{a})$ is M

 \implies there is one cyclic consecutive component of $D^{n-1}(\vec{a})$ which is taken from 0

or M such that at least one of them is M, holds

Suppose i = K holds

Then
$$i = K + 1$$
:

Lemma 2.10

Proof.

We prove it by induction on i:

i = 0:

By Lemma 2.6, $\max D^{n-1}(\vec{a}) = \max D^k(\vec{a}) = M$

 \implies there is a component of $D^{n-1}(\vec{a})$ is M

 \implies there is one cyclic consecutive component of $D^{n-1}(\vec{a})$ which is taken from 0

or M such that at least one of them is M, holds

Suppose i = K holds

Then i = K + 1:

We must prove that there are at least (K+1) + 1 cyclic consecutive components of $D^{(n-1)-(K+1)}(\vec{a})$ taken from 0 or M such that at least one of them is M:

(continued...)

Write

$$D^{(n-1)-(K+1)}(ec{a}) = (x_1, \cdots, x_N)$$
 and $D^{(n-1)-K}(ec{a}) = (y_1, \cdots, y_N)$

(continued...)

Write

$$D^{(n-1)-(K+1)}(\vec{a}) = (x_1, \cdots, x_N)$$
 and $D^{(n-1)-K}(\vec{a}) = (y_1, \cdots, y_N)$

$$\implies D(x_1, x_2, \cdots, x_N) = (y_1, y_2, \cdots, y_N)$$

(continued...)

Write

$$D^{(n-1)-(K+1)}(\vec{a}) = (x_1, \cdots, x_N)$$
 and $D^{(n-1)-K}(\vec{a}) = (y_1, \cdots, y_N)$

$$\implies D(x_1, x_2, \cdots, x_N) = (y_1, y_2, \cdots, y_N)$$

By induction hypothesis, we know that there are at least the $K+1$

cyclic consecutive components of $D^{(n-1)-K}(\vec{a})$ are taken from 0 or M such that at least one of them is M

(continued...)

Write

$$D^{(n-1)-(K+1)}(\vec{a}) = (x_1, \cdots, x_N)$$
 and $D^{(n-1)-K}(\vec{a}) = (y_1, \cdots, y_N)$

 $\implies D(x_1, x_2, \cdots, x_N) = (y_1, y_2, \cdots, y_N)$ By induction hypothesis, we know that there are at least the K+1 cyclic consecutive components of $D^{(n-1)-K}(\vec{a})$ are taken from 0 or M such that at least one of them is MSince Ducci processes are cyclic

(continued...)

Write

$$D^{(n-1)-(K+1)}(\vec{a}) = (x_1, \cdots, x_N)$$
 and $D^{(n-1)-K}(\vec{a}) = (y_1, \cdots, y_N)$

 $\implies D(x_1, x_2, \cdots, x_N) = (y_1, y_2, \cdots, y_N)$ By induction hypothesis, we know that there are at least the K+1 cyclic consecutive components of $D^{(n-1)-K}(\vec{a})$ are taken from 0 or M such that at least one of them is MSince Ducci processes are cyclic, we may assume $y_1, y_2, \cdots, y_K, y_{K+1}$ are K+1 cyclic consecutive components of $D^{(n-1)-K}(\vec{a})$ which are taken from 0 or M such that at least one of them is M without loss of generality \Box

(continued...)

By Lemma 2.8, $x_1, x_2, \cdots, x_K, x_{K+1}, x_{K+2} \in \{0, M\}$ and at least one of them is M

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...)

By Lemma 2.8, $x_1, x_2, \dots, x_K, x_{K+1}, x_{K+2} \in \{0, M\}$ and at least one of them is MHence, we conclude that $x_1, x_2, \dots, x_K, x_{K+1}, x_{K+2}$ are (K+1) + 1 cyclic consecutive components of $D^{(n-1)-(K+1)}(\vec{a})$ which are taken from 0 or M such that at least one of them is M, so i = K+1 holds

Remark 2.11

Proof.

The first statement follows from the fact that A_N is a collection of N-tuples of nonnegative integers Now, we prove the last statement:

Remark 2.11

Proof.

The first statement follows from the fact that ${\cal A}_N$ is a collection of N-tuples of nonnegative integers

Now, we prove the last statement:

$$\because i \le \min\{n-k-1, N-1\}$$

Remark 2.11

Proof.

The first statement follows from the fact that ${\cal A}_N$ is a collection of N-tuples of nonnegative integers

Now, we prove the last statement:

$$:: i \le \min\{n-k-1, N-1\}$$

$$\therefore i \le n-k-1$$

Remark 2.11

Proof.

The first statement follows from the fact that A_N is a collection of N-tuples of nonnegative integers Now, we prove the last statement: $\because i \leq \min\{n-k-1, N-1\}$ $\therefore i \leq n-k-1$ By (a), we have $0 \leq i \leq n-k-1$

Remark 2.11

Proof.

The first statement follows from the fact that A_N is a collection of N-tuples of nonnegative integers Now, we prove the last statement: $\therefore i \le \min\{n-k-1, N-1\}$ $\cdot i < n-k-1$ By (a), we have $0 \le i \le n - k - 1$ and $k = (n-1) - (n-k-1) \le (n-1) - i$ $\leq (n-1) - 0$ = n - 1

Theorem 2.12

Proof.

Therefore, $D^{(n-1)-i}(\vec{a})$ is in the (n-k)-cycle

Theorem 2.12

Proof.

Therefore, $D^{(n-1)-i}(\vec{a})$ is in the (n-k)-cycle By Lemma 2.6, we obtain $\max D^j(\vec{a}) = \max D^k(\vec{a}) = M$ for all $j = k, k+1, \cdots, n-1$

Theorem 2.12

Proof.

Therefore, $D^{(n-1)-i}(\vec{a})$ is in the (n-k)-cycle By Lemma 2.6, we obtain $\max D^j(\vec{a}) = \max D^k(\vec{a}) = M$ for all $j = k, k+1, \cdots, n-1$ In particular, $D^{n-1}(\vec{a}) = M$

Theorem 2.12

Proof.

Therefore, $D^{(n-1)-i}(\vec{a})$ is in the (n-k)-cycle By Lemma 2.6, we obtain $\max D^j(\vec{a}) = \max D^k(\vec{a}) = M$ for all $j = k, k+1, \cdots, n-1$ In particular, $D^{n-1}(\vec{a}) = M$ By Lemma 2.10, we know that there are at least N cyclic consecutive components of $D^{(n-1)-(N-1)}(\vec{a})$ taken from 0 or M

Theorem 2.12

Proof.

Therefore, $D^{(n-1)-i}(\vec{a})$ is in the (n-k)-cycle By Lemma 2.6, we obtain $\max D^j(\vec{a}) = \max D^k(\vec{a}) = M$ for all $j = k, k+1, \cdots, n-1$ In particular, $D^{n-1}(\vec{a}) = M$ By Lemma 2.10, we know that there are at least N cyclic consecutive components of $D^{(n-1)-(N-1)}(\vec{a})$ taken from 0 or M \implies the components of $D^{n-N}(\vec{a})$ are all equal to either 0 or Mwhich follows from $D^{n-N}(\vec{a}) \in A_N$

Theorem 2.12

Proof.

Therefore, $D^{(n-1)-i}(\vec{a})$ is in the (n-k)-cycle By Lemma 2.6, we obtain $\max D^j(\vec{a}) = \max D^k(\vec{a}) = M$ for all $j = k, k+1, \cdots, n-1$ In particular, $D^{n-1}(\vec{a}) = M$ By Lemma 2.10, we know that there are at least N cyclic consecutive components of $D^{(n-1)-(N-1)}(\vec{a})$ taken from 0 or M \implies the components of $D^{n-N}(\vec{a})$ are all equal to either 0 or Mwhich follows from $D^{n-N}(\vec{a}) \in A_N$ Now, look at the Ducci sequence of $D^{n-N}(\vec{a})$:

(continued...)

$$D^{n-N}(\vec{a}), D^{n-N+1}(\vec{a}), \cdots, D^{n-1}(\vec{a}), D^n(\vec{a}) = D^k(\vec{a}),$$
$$D^{k+1}(\vec{a}), D^{k+2}(\vec{a}), \cdots, D^{n-N-1}(\vec{a}), \cdots$$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

(continued...)

$$D^{n-N}(\vec{a}), D^{n-N+1}(\vec{a}), \cdots, D^{n-1}(\vec{a}), D^n(\vec{a}) = D^k(\vec{a}),$$
$$D^{k+1}(\vec{a}), D^{k+2}(\vec{a}), \cdots, D^{n-N-1}(\vec{a}), \cdots$$

 $\implies \text{the components of } D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all equal to either } 0 \text{ or } M, \text{ since the components of } D^{n-N}(\vec{a}) \text{ are all equal to } 0 \text{ or } M$ Hence, we complete this proof

DIFFY HEXAGO

Appendix

Proof for Remark 2.13

Proof.

Let M > 1 be an integer

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Proof for Remark 2.13

Proof.

Let M>1 be an integer and $ec{a}=(M,0,1,\cdots,1,1)\in A_N$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof for Remark 2.13

Proof.

Let M>1 be an integer and $\vec{a}=(M,0,1,\cdots,1,1)\in A_N$ Choose $\vec{b}=D(\vec{a})\in A_N$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

Let M > 1 be an integer and $\vec{a} = (M, 0, 1, \dots, 1, 1) \in A_N$ Choose $\vec{b} = D(\vec{a}) \in A_N$ $\implies \vec{b} = (M, 1, 0, \dots, 0, M-1)$

Proof.

Let M > 1 be an integer and $\vec{a} = (M, 0, 1, \dots, 1, 1) \in A_N$ Choose $\vec{b} = D(\vec{a}) \in A_N$ $\implies \vec{b} = (M, 1, 0, \dots, 0, M - 1)$ Note that $\max \vec{a} = \max \vec{b} = M$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

Let M > 1 be an integer and $\vec{a} = (M, 0, 1, \dots, 1, 1) \in A_N$ Choose $\vec{b} = D(\vec{a}) \in A_N$ $\implies \vec{b} = (M, 1, 0, \dots, 0, M - 1)$ Note that $\max \vec{a} = \max \vec{b} = M$ \therefore the components of \vec{a} , \vec{b} aren't all equal to either 0 or M

DIFFY HEXAGO

Appendix

Proof for Lemma 2.15

Lemma 2.15

Proof.

Let $\gcd \vec{a} = d$ Write $\vec{a} = d\vec{b}$ with $\gcd \vec{b} = 1$

DIFFY HEXAGO

Appendix

Proof for Lemma 2.15

Lemma 2.15

Proof.

Let $\operatorname{gcd} \vec{a} = d$ Write $\vec{a} = d\vec{b}$ with $\operatorname{gcd} \vec{b} = 1$ Note that d > 0 and $D(\vec{a}) = D(d\vec{b}) = dD(\vec{b})$

Lemma 2.15

Proof.

Let $\operatorname{gcd} \vec{a} = d$ Write $\vec{a} = d\vec{b}$ with $\operatorname{gcd} \vec{b} = 1$ Note that d > 0 and $D(\vec{a}) = D(d\vec{b}) = dD(\vec{b})$ $\implies D^n(\vec{a}) = D^n(d\vec{b}) = dD^n(\vec{b})$ by induction on n

Lemma 2.15

Proof.

Let
$$\operatorname{gcd} \vec{a} = d$$

Write $\vec{a} = d\vec{b}$ with $\operatorname{gcd} \vec{b} = 1$
Note that $d > 0$ and $D(\vec{a}) = D(d\vec{b}) = dD(\vec{b})$
 $\implies D^n(\vec{a}) = D^n(d\vec{b}) = dD^n(\vec{b})$ by induction on n
 $\implies d \mid D^n(\vec{a})$
Therefore, we know that $\operatorname{gcd} \vec{a} \mid D^n(\vec{a})$

DIFFY HEXAGO

Appendix

Proof for Corollary 2.16

Corollary 2.16

Proof.

It follows from Theorem 2.12 and Lemma 2.15

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Lemma 2.18

Proo<u>f.</u>

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^s(\vec{a})$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Lemma 2.18

Proof.

It suffices to show that $gcd D^r(\vec{a}) \mid gcd D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < s
Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^{r+1}(\vec{a})$:

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^{r+1}(\vec{a})$: Write $D^r(\vec{a}) = (x_1 d, x_2 d, \cdots, x_N d)$ such that $\operatorname{gcd}(x_1, x_2, \cdots, x_N) = 1$, where $\operatorname{gcd} D^r(\vec{a}) = d$

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^{r+1}(\vec{a})$: Write $D^r(\vec{a}) = (x_1 d, x_2 d, \cdots, x_N d)$ such that $\operatorname{gcd}(x_1, x_2, \cdots, x_N) = 1$, where $\operatorname{gcd} D^r(\vec{a}) = d$ $\implies d > 0$, since $D^r(\vec{a}) \in A_N$

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^{r+1}(\vec{a})$: Write $D^r(\vec{a}) = (x_1 d, x_2 d, \cdots, x_N d)$ such that $\operatorname{gcd}(x_1, x_2, \cdots, x_N) = 1$, where $\operatorname{gcd} D^r(\vec{a}) = d$ $\implies d > 0$, since $D^r(\vec{a}) \in A_N$ $\implies D^{r+1}(\vec{a}) = (|x_1 - x_2|d, \cdots, |x_{N-1} - x_N|d, |x_N - x_1|d)$

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^{r+1}(\vec{a})$: Write $D^r(\vec{a}) = (x_1 d, x_2 d, \cdots, x_N d)$ such that $gcd(x_1, x_2, \cdots, x_N) = 1$, where $gcd D^r(\vec{a}) = d$ $\implies d > 0$, since $D^r(\vec{a}) \in A_N$ $\implies D^{r+1}(\vec{a}) = (|x_1 - x_2|d, \cdots, |x_{N-1} - x_N|d, |x_N - x_1|d)$ Let gcd($|x_1 - x_2|, \cdots, |x_{N-1} - x_N|, |x_N - x_1|$) = d^*

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^{r+1}(\vec{a})$: Write $D^r(\vec{a}) = (x_1 d, x_2 d, \cdots, x_N d)$ such that $gcd(x_1, x_2, \cdots, x_N) = 1$, where $gcd D^r(\vec{a}) = d$ $\implies d > 0$, since $D^r(\vec{a}) \in A_N$ $\implies D^{r+1}(\vec{a}) = (|x_1 - x_2|d, \cdots, |x_{N-1} - x_N|d, |x_N - x_1|d)$ Let gcd($|x_1 - x_2|, \cdots, |x_{N-1} - x_N|, |x_N - x_1|$) = d^* \implies gcd $D^{r+1}(\vec{a}) = d^* \cdot d = d^* \cdot \text{gcd } D^r(\vec{a})$

Lemma 2.18

Proof.

It suffices to show that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^s(\vec{a})$ Given nonnegative integers r, s with $r \leq s$ If r = s, there is nothing to prove Now, we may assume that r < sIt is reduced to prove that $\operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^{r+1}(\vec{a})$: Write $D^r(\vec{a}) = (x_1 d, x_2 d, \cdots, x_N d)$ such that $gcd(x_1, x_2, \cdots, x_N) = 1$, where $gcd D^r(\vec{a}) = d$ $\implies d > 0$, since $D^r(\vec{a}) \in A_N$ $\implies D^{r+1}(\vec{a}) = (|x_1 - x_2|d, \cdots, |x_{N-1} - x_N|d, |x_N - x_1|d)$ Let gcd($|x_1 - x_2|, \cdots, |x_{N-1} - x_N|, |x_N - x_1|$) = d^* \implies gcd $D^{r+1}(\vec{a}) = d^* \cdot d = d^* \cdot \text{gcd } D^r(\vec{a})$ $\therefore \operatorname{gcd} D^r(\vec{a}) \mid \operatorname{gcd} D^{r+1}(\vec{a})$

Lemma 2.19

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$

Lemma 2.19

Proof.

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$ If r = s, then it is trivial

Lemma 2.19

Proof.

Given $k \le r, s \le n-1$ We may assume that $r \le s$ If r = s, then it is trivial Suppose r < s, then $gcd D^r(\vec{a}) \le gcd D^s(\vec{a})$ by Lemma 2.18

Lemma 2.19

Proof.

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$ If r = s, then it is trivial Suppose r < s, then $\gcd D^r(\vec{a}) \leq \gcd D^s(\vec{a})$ by Lemma 2.18 Now, look at the Ducci sequence of $D^s(\vec{a})$:

$$D^{s}(\vec{a}), D^{s+1}(\vec{a}), \cdots, D^{n-1}(\vec{a}),$$

 $D^{n}(\vec{a}) = D^{k}(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{r}(\vec{a}),$

Lemma 2.19

Proof.

Given $k \leq r, s \leq n-1$ We may assume that $r \leq s$ If r = s, then it is trivial Suppose r < s, then $\gcd D^r(\vec{a}) \leq \gcd D^s(\vec{a})$ by Lemma 2.18 Now, look at the Ducci sequence of $D^s(\vec{a})$:

$$D^{s}(\vec{a}), D^{s+1}(\vec{a}), \cdots, D^{n-1}(\vec{a}),$$

 $D^{n}(\vec{a}) = D^{k}(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{r}(\vec{a})$

By Lemma 2.18, we know that

INTRODUCTION

Proof for Lemma 2.19

(continued...)

$$\operatorname{gcd} D^{s}(\vec{a}) \leq \operatorname{gcd} D^{k}(\vec{a}) = \operatorname{gcd} D^{n}(\vec{a}) \leq \operatorname{gcd} D^{k+1}(\vec{a}) \leq \operatorname{gcd} D^{r}(\vec{a})$$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

(continued...)

$$\operatorname{gcd} D^{s}(\vec{a}) \leq \operatorname{gcd} D^{k}(\vec{a}) = \operatorname{gcd} D^{n}(\vec{a}) \leq \operatorname{gcd} D^{k+1}(\vec{a}) \leq \operatorname{gcd} D^{r}(\vec{a})$$

Therefore, $\operatorname{gcd} D^s(\vec{a}) \leq \operatorname{gcd} D^r(\vec{a})$

(continued...)

$$\operatorname{gcd} D^{s}(\vec{a}) \leq \operatorname{gcd} D^{k}(\vec{a}) = \operatorname{gcd} D^{n}(\vec{a}) \leq \operatorname{gcd} D^{k+1}(\vec{a}) \leq \operatorname{gcd} D^{r}(\vec{a})$$

Therefore, $\operatorname{gcd} D^s(\vec{a}) \leq \operatorname{gcd} D^r(\vec{a})$ So, we conclude that $\operatorname{gcd} D^r(\vec{a}) = \operatorname{gcd} D^s(\vec{a})$

Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-k and

$$D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$$

is the (n-k)-cycle of \vec{a}

Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-k and

$$D^{k}(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$$

is the
$$(n-k)$$
-cycle of $ec{a}$
Let $D^k(ec{a})=(x_1,x_2,\cdots,x_N)$

Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-k and

$$D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$$

is the (n - k)-cycle of \vec{a} Let $D^k(\vec{a}) = (x_1, x_2, \cdots, x_N)$ By Theorem 2.12, $x_1, x_2, \cdots, x_N \in \{0, M\}$, where $M = \max D^k(\vec{a})$

Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-k and

$$D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$$

is the (n-k)-cycle of \vec{a} Let $D^k(\vec{a}) = (x_1, x_2, \cdots, x_N)$ By Theorem 2.12, $x_1, x_2, \cdots, x_N \in \{0, M\}$, where $M = \max D^k(\vec{a})$ Since $D^k(\vec{a}) \in A_N$, we know that M is a nonnegative integer

Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-k and

$$D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$$

is the (n - k)-cycle of \vec{a} Let $D^k(\vec{a}) = (x_1, x_2, \cdots, x_N)$ By Theorem 2.12, $x_1, x_2, \cdots, x_N \in \{0, M\}$, where $M = \max D^k(\vec{a})$ Since $D^k(\vec{a}) \in A_N$, we know that M is a nonnegative integer \implies We have the following two cases: Case 1: M = 0Case 2: M > 0

(continued...)

Case 1: M = 0

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

Case 1:
$$M = 0$$

 $\implies D^k(\vec{a}) = (0, 0, \cdots, 0) \in (\mathbb{Z}_2)^N$

Case 1:
$$M = 0$$

 $\implies D^k(\vec{a}) = (0, 0, \cdots, 0) \in (\mathbb{Z}_2)^N$
 \implies
 $D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \cdots, 0) = (0, 0, \cdots, 0) = D^k(\vec{a})$

$$\begin{array}{ll} \textbf{Case 1:} & M = 0 \\ \implies & D^k(\vec{a}) = (0, 0, \cdots, 0) \in (\mathbb{Z}_2)^N \\ \implies \\ D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \cdots, 0) = (0, 0, \cdots, 0) = D^k(\vec{a}) \\ \implies & n-1 \leq k, \text{ since } \vec{a}, D(\vec{a}), \cdots, D^k(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all} \\ \\ \textbf{distinct} \end{array}$$

(continued...)

$$\begin{array}{ll} \textbf{Case 1: } M = 0 \\ \implies D^k(\vec{a}) = (0, 0, \cdots, 0) \in (\mathbb{Z}_2)^N \\ \implies \\ D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \cdots, 0) = (0, 0, \cdots, 0) = D^k(\vec{a}) \\ \implies n-1 \leq k, \text{ since } \vec{a}, D(\vec{a}), \cdots, D^k(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all} \\ \text{distinct} \end{array}$$

 \because the period of \vec{a} is n-k

$$\begin{array}{ll} \textbf{Case 1: } M = 0 \\ \implies D^k(\vec{a}) = (0, 0, \cdots, 0) \in (\mathbb{Z}_2)^N \\ \implies \\ D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \cdots, 0) = (0, 0, \cdots, 0) = D^k(\vec{a}) \\ \implies n-1 \leq k \text{, since } \vec{a}, D(\vec{a}), \cdots, D^k(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all } \\ \text{distinct} \end{array}$$

$$\because$$
 the period of \vec{a} is $n-k$

$$\therefore k \le n-1$$

Case 1:
$$M = 0$$

 $\implies D^k(\vec{a}) = (0, 0, \dots, 0) \in (\mathbb{Z}_2)^N$
 \implies
 $D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \dots, 0) = (0, 0, \dots, 0) = D^k(\vec{a})$
 $\implies n-1 \le k$, since $\vec{a}, D(\vec{a}), \dots, D^k(\vec{a}), \dots, D^{n-1}(\vec{a})$ are all distinct

∴ the period of
$$\vec{a}$$
 is $n - k$
∴ $k \le n - 1$
Therefore, we have $n - 1 = k$

(continued...)

Case 1:
$$M = 0$$

 $\implies D^k(\vec{a}) = (0, 0, \dots, 0) \in (\mathbb{Z}_2)^N$
 \implies
 $D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \dots, 0) = (0, 0, \dots, 0) = D^k(\vec{a})$
 $\implies n-1 \le k$, since $\vec{a}, D(\vec{a}), \dots, D^k(\vec{a}), \dots, D^{n-1}(\vec{a})$ are all distinct
 \therefore the period of \vec{a} is $n-k$
 $\therefore k \le n-1$

Therefore, we have n-1=k

So, the period of \vec{a} is n-k=1

Case 1:
$$M = 0$$

 $\implies D^k(\vec{a}) = (0, 0, \dots, 0) \in (\mathbb{Z}_2)^N$
 \implies
 $D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0, 0, \dots, 0) = (0, 0, \dots, 0) = D^k(\vec{a})$
 $\implies n-1 \leq k$, since $\vec{a}, D(\vec{a}), \dots, D^k(\vec{a}), \dots, D^{n-1}(\vec{a})$ are all distinct
 \therefore the period of \vec{a} is $n-k$
 $\therefore k \leq n-1$
Therefore, we have $n-1 = k$
So, the period of \vec{a} is $n-k = 1$
Choose $\vec{b} = \vec{0} \in (\mathbb{Z}_2)^N$

$$\begin{array}{ll} \textbf{Case 1: } M=0 \\ \implies D^k(\vec{a}) = (0,0,\cdots,0) \in (\mathbb{Z}_2)^N \\ \implies \\ D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(0,0,\cdots,0) = (0,0,\cdots,0) = D^k(\vec{a}) \\ \implies n-1 \leq k, \text{ since } \vec{a}, D(\vec{a}),\cdots, D^k(\vec{a}),\cdots, D^{n-1}(\vec{a}) \text{ are all} \\ \text{distinct} \\ \because \text{ the period of } \vec{a} \text{ is } n-k \\ \therefore k \leq n-1 \\ \text{Therefore, we have } n-1 = k \\ \text{So, the period of } \vec{a} \text{ is } n-k = 1 \\ \text{Choose } \vec{b} = \vec{0} \in (\mathbb{Z}_2)^N \\ \implies D(\vec{b}) = D(0,0,\cdots,0) = (0,0,\cdots,0) = \vec{b} = D^0(\vec{b}) \end{array}$$

(continued...)

$$\implies$$
 the period of \vec{b} is $(1-0) = 1$ and the 1-cycle of \vec{b} is $D^0(\vec{b}) = \vec{0}$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

$$\implies$$
 the period of \vec{b} is $(1-0) = 1$ and the 1-cycle of \vec{b} is $D^0(\vec{b}) = \vec{0}$
Therefore, the period of \vec{a} is equal to the period of \vec{b}

(continued...)

 $\implies \text{the period of } \vec{b} \text{ is } (1-0) = 1 \text{ and the 1-cycle of } \vec{b} \text{ is } D^0(\vec{b}) = \vec{0}$ Therefore, the period of \vec{a} is equal to the period of \vec{b} Note that $D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b})$

(continued...)

 $\implies \text{the period of } \vec{b} \text{ is } (1-0) = 1 \text{ and the 1-cycle of } \vec{b} \text{ is } D^0(\vec{b}) = \vec{0}$ Therefore, the period of \vec{a} is equal to the period of \vec{b} Note that $D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b})$ $\implies \text{the cycle of } \vec{a} \text{ is similar to the cycle of } \vec{b}$ Hence, we are done

(continued...)

 $\implies \text{the period of } \vec{b} \text{ is } (1-0) = 1 \text{ and the 1-cycle of } \vec{b} \text{ is } D^0(\vec{b}) = \vec{0}$ Therefore, the period of \vec{a} is equal to the period of \vec{b} Note that $D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b})$ $\implies \text{the cycle of } \vec{a} \text{ is similar to the cycle of } \vec{b}$ Hence, we are done **Case 2:** M > 0

(continued...)

 $\begin{array}{l} \Longrightarrow & \text{the period of } \vec{b} \text{ is } (1-0) = 1 \text{ and the 1-cycle of } \vec{b} \text{ is } \\ D^0(\vec{b}) = \vec{0} \\ \\ \text{Therefore, the period of } \vec{a} \text{ is equal to the period of } \vec{b} \\ \text{Note that } D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b}) \\ \\ \implies & \text{the cycle of } \vec{a} \text{ is similar to the cycle of } \vec{b} \\ \\ \text{Hence, we are done} \\ \\ \hline \textbf{Case 2: } M > 0 \\ \\ \implies & M \in \mathbb{N} \\ \end{array}$
(continued...)

 \implies the period of \vec{b} is (1-0) = 1 and the 1-cycle of \vec{b} is $D^0(\vec{b}) = \vec{0}$ Therefore, the period of \vec{a} is equal to the period of \vec{b} Note that $D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b})$ \implies the cycle of \vec{a} is similar to the cycle of \vec{b} Hence, we are done **Case 2:** M > 0 $\implies M \in \mathbb{N}$ Write $D^k(\vec{a}) = (x_1, x_2, \dots, x_N) = M(y_1, y_2, \dots, y_N)$, where y_1, y_2, \cdots, y_N are taken from 0 or 1

(continued...)

 \implies the period of \vec{b} is (1-0) = 1 and the 1-cycle of \vec{b} is $D^0(\vec{b}) = \vec{0}$ Therefore, the period of \vec{a} is equal to the period of \vec{b} Note that $D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b})$ \implies the cycle of \vec{a} is similar to the cycle of \vec{b} Hence, we are done **Case 2:** M > 0 $\implies M \in \mathbb{N}$ Write $D^k(\vec{a}) = (x_1, x_2, \dots, x_N) = M(y_1, y_2, \dots, y_N)$, where y_1, y_2, \cdots, y_N are taken from 0 or 1 Choose $\vec{b} = (y_1, y_2, \cdots, y_N) \in (\mathbb{Z}_2)^N$

(continued...)

 \implies the period of \vec{b} is (1-0) = 1 and the 1-cycle of \vec{b} is $D^0(\vec{b}) = \vec{0}$ Therefore, the period of \vec{a} is equal to the period of \vec{b} Note that $D^{k+1}(\vec{a}) = \vec{0} = D^0(\vec{b})$ \implies the cycle of \vec{a} is similar to the cycle of \vec{b} Hence, we are done **Case 2:** M > 0 $\implies M \in \mathbb{N}$ Write $D^k(\vec{a}) = (x_1, x_2, \dots, x_N) = M(y_1, y_2, \dots, y_N)$, where y_1, y_2, \cdots, y_N are taken from 0 or 1 Choose $\vec{b} = (y_1, y_2, \cdots, y_N) \in (\mathbb{Z}_2)^N$ $\implies D^k(\vec{a}) = M\vec{b}$

(continued...)

$$\implies D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(M\vec{b}) = MD(\vec{b})$$

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

$$\implies D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(M\vec{b}) = MD(\vec{b})$$
$$\implies D^{k+i}(\vec{a}) = MD^i(\vec{b}), \forall i = 1, 2, \cdots, n-k$$

$$\implies D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(M\vec{b}) = MD(\vec{b})$$

$$\implies D^{k+i}(\vec{a}) = MD^i(\vec{b}), \forall i = 1, 2, \cdots, n-k$$
In particular, $M\vec{b} = D^k(\vec{a}) = D^n(\vec{a}) = MD^{n-k}(\vec{b})$

$$\implies D^0(\vec{b}) = \vec{b} = D^{n-k}(\vec{b})$$

$$\implies D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(M\vec{b}) = MD(\vec{b})$$

$$\implies D^{k+i}(\vec{a}) = MD^i(\vec{b}), \forall i = 1, 2, \cdots, n-k$$
In particular, $M\vec{b} = D^k(\vec{a}) = D^n(\vec{a}) = MD^{n-k}(\vec{b})$

$$\implies D^0(\vec{b}) = \vec{b} = D^{n-k}(\vec{b})$$
By assumption,
$$D^k(\vec{a}) = M\vec{b}, D^{k+1}(\vec{a}) = MD(\vec{b}), \cdots, D^{n-1}(\vec{a}) = D^{n-k-1}(\vec{b})$$
are all distinct

(continued...)

$$\implies D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(M\vec{b}) = MD(\vec{b})$$

$$\implies D^{k+i}(\vec{a}) = MD^i(\vec{b}), \forall i = 1, 2, \cdots, n-k$$
In particular, $M\vec{b} = D^k(\vec{a}) = D^n(\vec{a}) = MD^{n-k}(\vec{b})$

$$\implies D^0(\vec{b}) = \vec{b} = D^{n-k}(\vec{b})$$
By assumption,
$$D^k(\vec{a}) = M\vec{b}, D^{k+1}(\vec{a}) = MD(\vec{b}), \cdots, D^{n-1}(\vec{a}) = D^{n-k-1}(\vec{b})$$
are all distinct
$$\implies D^0(\vec{b}) = \vec{b} D(\vec{b})$$

 $\implies D^0(ec{b}) = ec{b}, D(ec{b}), \cdots, D^{n-k-1}(ec{b})$ are all distinct

(continued...)

$$\implies D^{k+1}(\vec{a}) = D(D^k(\vec{a})) = D(M\vec{b}) = MD(\vec{b})$$

$$\implies D^{k+i}(\vec{a}) = MD^i(\vec{b}), \forall i = 1, 2, \cdots, n-k$$
In particular, $M\vec{b} = D^k(\vec{a}) = D^n(\vec{a}) = MD^{n-k}(\vec{b})$

$$\implies D^0(\vec{b}) = \vec{b} = D^{n-k}(\vec{b})$$
By assumption,
$$D^k(\vec{a}) = M\vec{b}, D^{k+1}(\vec{a}) = MD(\vec{b}), \cdots, D^{n-1}(\vec{a}) = D^{n-k-1}(\vec{b})$$
are all distinct
$$\implies D^0(\vec{b}) = \vec{b} D(\vec{b})$$
where $D^{n-k-1}(\vec{b})$ are all distinct

 $\implies D^0(b) = \vec{b}, D(\vec{b}), \cdots, D^{n-k-1}(\vec{b}) \text{ are all distinct}$ Therefore, the period of \vec{b} is (n-k) - 0 = n-k and the (n-k)-cycle of \vec{b} is $D^0(\vec{b}) = \vec{b}, D(\vec{b}), \cdots, D^{n-k-1}(\vec{b})$

(continued...)

$$(n-k)$$
-cycle of \vec{b} is $D^0(\vec{b}) = \vec{b}, D(\vec{b}), \cdots, D^{n-k-1}(\vec{b})$

So, the period of \vec{a} is equal to the period of b

(continued...)

$$\therefore D^k(\vec{a}) = M\vec{b} = MD^0(\vec{b})$$

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

$$\therefore D^k(\vec{a}) = M\vec{b} = MD^0(\vec{b})$$

$$\therefore \text{ the cycle of } \vec{a} \text{ is similar to the cycle of } \vec{b}$$

Hence, we complete this proof

Lemma 3.4

Proo<u>f</u>.

Note that
$$D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$$

Lemma 3.4

Proof.

Note that $D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$ Since the cycle of \vec{a} is similar to the cycle of $\vec{b}, \exists m \in \mathbb{N}$ such that

$$D^r(\vec{a}) = mD^s(\vec{b}),$$

where r, s are nonnegative integers with $k \leq s \leq n-1$

Lemma 3.4

Proof.

Note that $D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$ Since the cycle of \vec{a} is similar to the cycle of $\vec{b}, \exists m \in \mathbb{N}$ such that

$$D^r(\vec{a}) = mD^s(\vec{b}),$$

where r, s are nonnegative integers with $k \le s \le n-1$ Then, we have:

$$D^{r+1}(\vec{a^c}) = D^r(D(\vec{a^c}))$$
$$= D^r(D(\vec{a}))$$
$$= D^{r+1}(\vec{a})$$

Proof.

$$= D(D^{r}(\vec{a}))$$
$$= D(mD^{s}(\vec{b}))$$
$$= mD(D^{s}(\vec{b}))$$
$$= mD^{s+1}(\vec{b})$$

 $\implies D^{r+1}(\vec{a^c}) = mD^{s+1}(\vec{b})$ which completes this proof

Proof for Remark 3.5

Proof.

If $k \le s < n - 1$, then it is trivial Now, we may assume that s = n - 1:

Proof for Remark 3.5

Proof.

If $k \le s < n - 1$, then it is trivial Now, we may assume that s = n - 1: $\implies s + 1 = n$

Proof for Remark 3.5

Proof.

If $k \leq s < n - 1$, then it is trivial Now, we may assume that s = n - 1: $\implies s + 1 = n$ $\implies D^{s+1}(\vec{b}) = D^n(\vec{b}) = D^k(\vec{b})$ is in the cycle of \vec{b}

Lemma 3.6

Proof.

Lemma 3.6

Proof.

Note that $D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$

" \Rightarrow " Suppose the condition holds

Lemma 3.6

Proof.

Note that $D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$

" \Rightarrow " Suppose the condition holds $\implies \exists k \leq r \leq n-1 \text{ such that } \vec{a^c} = D^r(\vec{a})$

Lemma 3.6

Proof.

Note that $D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$

" \Rightarrow " Suppose the condition holds $\implies \exists k \leq r \leq n-1 \text{ such that } \vec{a^c} = D^r(\vec{a})$ $\implies D(\vec{a}) = D(\vec{a^c}) = D(D^r(\vec{a})) = D^{r+1}(\vec{a})$

"

Lemma 3.6

Proof.

$$\Rightarrow " \text{ Suppose the condition holds} \Rightarrow \exists k \leq r \leq n-1 \text{ such that } \vec{a^c} = D^r(\vec{a}) \Rightarrow D(\vec{a}) = D(\vec{a^c}) = D(D^r(\vec{a})) = D^{r+1}(\vec{a}) \Rightarrow n-1 \leq r, \text{ since } D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^k(\vec{a}), \cdots, D^r(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all distinct}$$

"

Lemma 3.6

Proof.

$$\Rightarrow " \text{ Suppose the condition holds} \Rightarrow \exists k \leq r \leq n-1 \text{ such that } \vec{a^c} = D^r(\vec{a}) \Rightarrow D(\vec{a}) = D(\vec{a^c}) = D(D^r(\vec{a})) = D^{r+1}(\vec{a}) \Rightarrow n-1 \leq r, \text{ since } D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^k(\vec{a}), \cdots, D^r(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all distinct} Therefore, $r = n-1$$$

"

Lemma 3.6

Proof.

$$\Rightarrow " \text{ Suppose the condition holds} \Rightarrow \exists k \leq r \leq n-1 \text{ such that } \vec{a^c} = D^r(\vec{a}) \Rightarrow D(\vec{a}) = D(\vec{a^c}) = D(D^r(\vec{a})) = D^{r+1}(\vec{a}) \Rightarrow n-1 \leq r, \text{ since } D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^k(\vec{a}), \cdots, D^r(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all distinct} Therefore, $r = n-1$
 $\Rightarrow n = r+1$$$

Lemma 3.6

Proof.

Note that $D(\vec{a^c}) = (|a_1 - a_2|, |a_2 - a_3|, \cdots, |a_N - a_1|) = D(\vec{a})$

" $\begin{array}{l} \text{``\Rightarrow''} \quad \text{Suppose the condition holds} \\ \implies \exists k \leq r \leq n-1 \text{ such that } \vec{a^c} = D^r(\vec{a}) \\ \implies D(\vec{a}) = D(\vec{a^c}) = D(D^r(\vec{a})) = D^{r+1}(\vec{a}) \\ \implies n-1 \leq r, \text{ since } D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, \\ D^k(\vec{a}), \cdots, D^r(\vec{a}), \cdots, D^{n-1}(\vec{a}) \text{ are all distinct} \\ \text{Therefore, } r = n-1 \\ \implies n = r+1 \\ \text{Then, we have:} \\ D^k(\vec{a}) = D^n(\vec{a}) = D^{r+1}(\vec{a}) = D(\vec{a^c}) = D(\vec{a}) \end{aligned}$ (*)

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \geq 1$

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \geq 1$ By assumption, $D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^{k-1}(\vec{a}),$ $D^k(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \ge 1$ By assumption, $D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^{k-1}(\vec{a}),$ $D^k(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct $\implies n-1 \le k-1$, by (*)

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \ge 1$ By assumption, $D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^{k-1}(\vec{a}),$ $D^k(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct $\implies n-1 \le k-1$, by (*) $\implies n \le k$ which is a contradiction to n > k

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \ge 1$ By assumption, $D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^{k-1}(\vec{a}),$ $D^k(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct $\implies n-1 \le k-1$, by (*) $\implies n \le k$ which is a contradiction to n > k

By **Claim** and (*), we obtain $\vec{a} = D^0(\vec{a}) = D(\vec{a^c})$

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \ge 1$ By assumption, $D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^{k-1}(\vec{a}),$ $D^k(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct $\implies n-1 \le k-1$, by (*) $\implies n \le k$ which is a contradiction to n > k

> By **Claim** and (*), we obtain $\vec{a} = D^0(\vec{a}) = D(\vec{a^c})$ $\implies \forall 1 \le i \le N, a_i = M - a_i$

(continued...)

'⇒" Claim:
$$k = 0$$

Proof.

If not, suppose $k \ge 1$ By assumption, $D^0(\vec{a}) = \vec{a}, D(\vec{a}), \cdots, D^{k-1}(\vec{a}),$ $D^k(\vec{a}), \cdots, D^{n-1}(\vec{a})$ are all distinct $\implies n-1 \le k-1$, by (*) $\implies n \le k$ which is a contradiction to n > k

> By **Claim** and (*), we obtain $\vec{a} = D^0(\vec{a}) = D(\vec{a^c})$ $\implies \forall 1 \le i \le N, a_i = M - a_i$ $\implies \forall 1 \le i \le N, a_i = \frac{M}{2}$

"
$$\Rightarrow$$
" $\implies M = \max \vec{a} = \frac{M}{2}$
"
$$\Rightarrow$$
" $\implies M = \max \vec{a} = \frac{M}{2}$
 $\implies M = 0$

"⇒" ⇒
$$M = \max \vec{a} = \frac{M}{2}$$

⇒ $M = 0$
 $\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$

"⇒" ⇒
$$M = \max \vec{a} = \frac{M}{2}$$

⇒ $M = 0$
 $\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$
 $\therefore a_1 = a_2 = \cdots = a_N = 0$

"
$$\implies M = \max \vec{a} = \frac{M}{2}$$

$$\implies M = 0$$

$$\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$$

$$\therefore a_1 = a_2 = \cdots = a_N = 0$$

$$\implies \vec{a} = \vec{0}$$
"
$$\iff$$
Suppose $\vec{a} = \vec{0}$

"
$$\implies M = \max \vec{a} = \frac{M}{2}$$

$$\implies M = 0$$

$$\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$$

$$\therefore a_1 = a_2 = \cdots = a_N = 0$$

$$\implies \vec{a} = \vec{0}$$
"
$$\iff \text{Suppose } \vec{a} = \vec{0}$$

$$\implies a_1 = a_2 = \cdots = a_N = 0$$

"
$$\implies M = \max \vec{a} = \frac{M}{2}$$

$$\implies M = 0$$

$$\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$$

$$\therefore a_1 = a_2 = \cdots = a_N = 0$$

$$\implies \vec{a} = \vec{0}$$
"
$$\implies a_1 = a_2 = \cdots = a_N = 0$$

$$\implies a_1 = a_2 = \cdots = a_N = 0$$

$$\implies M = 0$$

"
$$\implies M = \max \vec{a} = \frac{M}{2}$$

$$\implies M = 0$$

$$\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$$

$$\therefore a_1 = a_2 = \cdots = a_N = 0$$

$$\implies \vec{a} = \vec{0}$$
"
$$\implies a_1 = a_2 = \cdots = a_N = 0$$

$$\implies M = 0$$

$$\implies M = 0$$

$$\implies \vec{a^c} = (0, 0, \cdots, 0)$$

"
$$\implies M = \max \vec{a} = \frac{M}{2}$$

$$\implies M = 0$$

$$\therefore 0 \le a_1, a_2, \cdots, a_N \le M = 0$$

$$\therefore a_1 = a_2 = \cdots = a_N = 0$$

$$\implies \vec{a} = \vec{0}$$
"
$$\implies a_1 = a_2 = \cdots = a_N = 0$$

$$\implies a_1 = a_2 = \cdots = a_N = 0$$

$$\implies M = 0$$

$$\implies M = 0$$

$$\implies \vec{a^c} = (0, 0, \cdots, 0)$$
Note that
$$D(\vec{a}) = D(0, 0, \cdots, 0) = (0, 0, \cdots, 0) = \vec{a} = D^0(\vec{a})$$

Appendix

Proof for Lemma 3.6

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...) " \Leftarrow " \implies the period of \vec{a} is (1-0) = 1 and the 1-cycle of \vec{a} is $D^0(\vec{a}) = (0, 0, \cdots, 0) = \vec{a^c}$ Hence, we complete this proof

Lemma 3.7

Proo<u>f</u>.

Write
$$\vec{x} = (x_1, x_2, \cdots, x_N), \vec{y} = (y_1, y_2, \cdots, y_N) \in A_N$$

Lemma 3.7

Write
$$\vec{x}=(x_1,x_2,\cdots,x_N), \vec{y}=(y_1,y_2,\cdots,y_N)\in A_N$$

(a)

$$T(c\vec{x} + \vec{y}) = T(cx_1 + y_1, cx_2 + y_2, \cdots, cx_N + y_N)$$

= $(cx_2 + y_2, \cdots, cx_N + y_N, cx_1 + y_1)$
= $c(x_2, \cdots, x_N, x_1) + (y_2, \cdots, y_N, y_1)$
= $cT(\vec{x}) + T(\vec{y})$

Lemma 3.7

Proof.

Write
$$\vec{x} = (x_1, x_2, \cdots, x_N), \vec{y} = (y_1, y_2, \cdots, y_N) \in A_N$$
(a)

$$T(c\vec{x} + \vec{y}) = T(cx_1 + y_1, cx_2 + y_2, \cdots, cx_N + y_N)$$

= $(cx_2 + y_2, \cdots, cx_N + y_N, cx_1 + y_1)$
= $c(x_2, \cdots, x_N, x_1) + (y_2, \cdots, y_N, y_1)$
= $cT(\vec{x}) + T(\vec{y})$

(b) Given $(a_1, a_2, \cdots, a_N) \in A_N$

(continued...)

(b) Note that

$$D \circ T(a_1, a_2, \cdots, a_N) = D(T(a_1, a_2, \cdots, a_N))$$

= $D(a_2, \cdots, a_N, a_1)$
= $(|a_2 - a_3|, \cdots, |a_N - a_1|, |a_1 - a_2|)$

and

$$T \circ D(a_1, a_2, \cdots, a_N) = T(D(a_1, a_2, \cdots, a_N))$$

= $T(|a_1 - a_2|, \cdots, |a_{N-1} - a_N|, |a_N - a_1|)$

(continued...) (b) $= (|a_2 - a_3|, \cdots, |a_N - a_1|, |a_1 - a_2|)$ $\implies D \circ T(a_1, a_2, \cdots, a_N) = T \circ D(a_1, a_2, \cdots, a_N)$

DIFFY HEXAGO

Appendix

Proof for Remark 3.8

Proof.

Given $x, y \in \mathbb{Z}_2$

Similar Cycles

DIFFY HEXAGO

Appendix

Proof for Remark 3.8

Proof.

Given
$$x, y \in \mathbb{Z}_2$$

 $\implies 2y = 0$

y

Proof for Remark 3.8

Proof.

$$\begin{array}{ll} \mbox{Given } x,y\in \mathbb{Z}_2\\ \implies & 2y=0\\ \implies & x-y=x-y+2y=x+ \end{array}$$

Proof for Remark 3.8

Proof.

Given
$$x, y \in \mathbb{Z}_2$$

 $\implies 2y = 0$
 $\implies x - y = x - y + 2y = x + y$
 $\implies |x - y| = |x + y|$

Given
$$x, y \in \mathbb{Z}_2$$

 $\implies 2y = 0$
 $\implies x - y = x - y + 2y = x + y$
 $\implies |x - y| = |x + y|$
 $\implies |x - y| = x + y$, since $x, y \in \mathbb{Z}_2$

Remark 3.9

- " \Rightarrow " It is trivial
- " \Leftarrow " Suppose the condition holds

Remark 3.9

- " \Rightarrow " It is trivial
- "(=" Suppose the condition holds Given $\vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$, and $c \in \mathbb{Z}_2$ We must show that $\mathscr{L}(c\vec{x} + \vec{y}) = c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$:

Remark 3.9

- " \Rightarrow " It is trivial
- " \Leftarrow " Suppose the condition holds Given $\vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$, and $c \in \mathbb{Z}_2$ We must show that $\mathscr{L}(c\vec{x} + \vec{y}) = c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$: If c = 1, then there is nothing to prove Now, we may assume that c = 0:

Remark 3.9

- " \Rightarrow " It is trivial
- " \Leftarrow " Suppose the condition holds Given $\vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$, and $c \in \mathbb{Z}_2$ We must show that $\mathscr{L}(c\vec{x} + \vec{y}) = c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$: If c = 1, then there is nothing to prove Now, we may assume that c = 0: $\Longrightarrow \mathscr{L}(c\vec{x} + \vec{y}) = \mathscr{L}(\vec{0} + \vec{y}) = \mathscr{L}(\vec{y})$

Remark 3.9

- " \Rightarrow " It is trivial
- " \Leftarrow " Suppose the condition holds Given $\vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$, and $c \in \mathbb{Z}_2$ We must show that $\mathscr{L}(c\vec{x} + \vec{y}) = c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$: If c = 1, then there is nothing to prove Now, we may assume that c = 0: $\Longrightarrow \mathscr{L}(c\vec{x} + \vec{y}) = \mathscr{L}(\vec{0} + \vec{y}) = \mathscr{L}(\vec{y})$ and $c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y}) = \vec{0} + \mathscr{L}(\vec{y}) = \mathscr{L}(\vec{y})$

Remark 3.9

- " \Rightarrow " It is trivial
- " \Leftarrow " Suppose the condition holds Given $\vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$, and $c \in \mathbb{Z}_2$ We must show that $\mathscr{L}(c\vec{x} + \vec{y}) = c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$: If c = 1, then there is nothing to prove Now, we may assume that c = 0: $\Longrightarrow \mathscr{L}(c\vec{x} + \vec{y}) = \mathscr{L}(\vec{0} + \vec{y}) = \mathscr{L}(\vec{y})$ and $c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y}) = \vec{0} + \mathscr{L}(\vec{y}) = \mathscr{L}(\vec{y})$ $\therefore \mathscr{L}(c\vec{x} + \vec{y}) = c\mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$

Lemma 3.10

Proof.

We prove it by induction on i: i = 0:

Lemma 3.10

Proof.

We prove it by induction on *i*: i = 0: $\mathscr{T}^0 = \mathscr{I}$ is a linear transformation, holds

Lemma 3.10

Proof.

We prove it by induction on i: i = 0: $\mathscr{T}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1:

Lemma 3.10

Proof.

We prove it by induction on i: i = 0: $\mathscr{T}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1: By Remark 3.9, it suffices to show that:

Lemma 3.10

Proof.

We prove it by induction on i: i = 0: $\mathscr{T}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1: By Remark 3.9, it suffices to show that:

$$\mathscr{T}^{K+1}(\vec{x}+\vec{y}) = \mathscr{T}^{K+1}(\vec{x}) + \mathscr{T}^{K+1}(\vec{y}), \forall \, \vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$$

Lemma 3.10

Proof.

We prove it by induction on i: i = 0: $\mathcal{T}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1: By Remark 3.9, it suffices to show that: $\mathcal{T}^{K+1}(\vec{x} + \vec{y}) = \mathcal{T}^{K+1}(\vec{x}) + \mathcal{T}^{K+1}(\vec{y}), \forall \vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$

Given $\vec{x} = (x_1, x_2, \cdots, x_N), \vec{y} = (y_1, y_2, \cdots, y_N) \in (\mathbb{Z}_2)^N$

(continued...)

$$\begin{split} \mathscr{T}^{K+1}(\vec{x} + \vec{y}) &= \mathscr{T}^{K}(T(\vec{x} + \vec{y})) \\ &= \mathscr{T}^{K}(\mathscr{T}(x_{1} + y_{1}, x_{2} + y_{2}, \cdots, x_{N} + y_{N})) \\ &= \mathscr{T}^{K}(x_{2} + y_{2}, \cdots, x_{N} + y_{N}, x_{1} + y_{1}) \\ &= \mathscr{T}^{K}(x_{2}, \cdots, x_{N}, x_{1}) + \mathscr{T}^{K}(y_{2}, \cdots, y_{N}), \text{ by } \\ &\text{ induction hypothesis} \\ &= \mathscr{T}^{K}(\mathscr{T}(x_{1}, x_{2}, \cdots, x_{N})) + \mathscr{T}^{K}(\mathscr{T}(y_{1}, y_{2}, \cdots, y_{N})) \\ &= \mathscr{T}^{K+1}(x_{1}, x_{2}, \cdots, x_{N}) + \mathscr{T}^{K+1}(y_{1}, y_{2}, \cdots, y_{N}) \\ &= \mathscr{T}^{K+1}(\vec{x}) + \mathscr{T}^{K+1}(\vec{y}) \end{split}$$

By induction, we complete this proof
Lemma 3.11

Proof.

We prove it by induction on i: i = 0:

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Lemma 3.11

Proof.

We prove it by induction on i: i = 0: $\mathscr{D}^0 = \mathscr{I}$ is a linear transformation, holds

Lemma 3.11

Proof.

We prove it by induction on i: i = 0: $\mathscr{D}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1:

Lemma 3.11

Proof.

We prove it by induction on i: i = 0: $\mathscr{D}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1: By Remark 3.9, it suffices to show that:

$$\mathscr{D}^{K+1}(\vec{x}+\vec{y}) = \mathscr{D}^{K+1}(\vec{x}) + \mathscr{D}^{K+1}(\vec{y}), \forall \, \vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$$

Lemma 3.11

Proof.

We prove it by induction on i: i = 0: $\mathscr{D}^0 = \mathscr{I}$ is a linear transformation, holds Suppose i = K holds Then, i = K + 1: By Remark 3.9, it suffices to show that: $\mathscr{D}^{K+1}(\vec{x} + \vec{y}) = \mathscr{D}^{K+1}(\vec{x}) + \mathscr{D}^{K+1}(\vec{y}), \forall \vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$

Given $\vec{x} = (x_1, x_2, \cdots, x_N), \vec{y} = (y_1, y_2, \cdots, y_N) \in (\mathbb{Z}_2)^N$

(continued...)

$$\begin{split} \mathscr{D}^{K+1}(\vec{x} + \vec{y}) &= \mathscr{D}^{K}(\mathscr{D}(\vec{x} + \vec{y})) \\ &= \mathscr{D}^{K}(\mathscr{D}(x_{1} + y_{1}, x_{2} + y_{2}, \cdots, x_{N} + y_{N})) \\ &= \mathscr{D}^{K}(|(x_{1} + y_{1}) - (x_{2} + y_{2})|, \cdots, |(x_{N-1} + y_{N-1}) \\ &- (x_{N} + y_{N})|, |(x_{N} + y_{N}) - (x_{1} + y_{1})|) \\ &= \mathscr{D}^{K}((x_{1} + y_{1}) + (x_{2} + y_{2}), \cdots, (x_{N-1} + y_{N-1}) \\ &+ (x_{N} + y_{N}), (x_{N} + y_{N}) + (x_{1} + y_{1})), \text{by Remark 3.8} \\ &= \mathscr{D}^{K}((x_{1} + x_{2}) + (y_{1} + y_{2}), \cdots, (x_{N-1} + x_{N}) \\ &+ (y_{N-1} + y_{N}), (x_{N} + x_{1}) + (y_{N} + y_{1})) \end{split}$$

(continued...)

$$\begin{split} &= \mathscr{D}^{K}(x_{1}+x_{2},\cdots,x_{N-1}+x_{N},x_{N}+x_{1})+\mathscr{D}^{K}(y_{1}+y_{2},\cdots,\\ &y_{N-1}+y_{N},y_{N}+y_{1}), \text{ by induction hypothesis}\\ &= \mathscr{D}^{K}(|x_{1}-x_{2}|,\cdots,|x_{N-1}-x_{N}|,|x_{N}-x_{1}|)+\\ &\mathscr{D}^{K}(|y_{1}-y_{2}|,\cdots,|y_{N-1}-y_{N}|,|y_{N}-y_{1}|), \text{ by Remark 3.8}\\ &= \mathscr{D}^{K}(\mathscr{D}(x_{1},x_{2},\cdots,x_{N}))+\mathscr{D}^{K}(\mathscr{D}(y_{1},y_{2},\cdots,y_{N}))\\ &= \mathscr{D}^{K+1}(x_{1},x_{2},\cdots,x_{N})+\mathscr{D}^{K+1}\mathscr{D}(y_{1},y_{2},\cdots,y_{N})\\ &= \mathscr{D}^{K+1}(\vec{x})+\mathscr{D}^{K+1}(\vec{y}) \end{split}$$

By induction, we complete this proof

Proof.

We prove it by induction on i:

Proof.

- We prove it by induction on *i*:
- i = 0: It is trivial

Lemma 3.12

Proof.

We prove it by induction on i: i = 0: It is trivial Suppose i = K holds Then, i = K + 1:

Lemma 3.12

Proof.

We prove it by induction on i: i = 0: It is trivial Suppose i = K holds Then, i = K + 1:

$$D^{(r-s)(K+1)}(D^{t}(\vec{a})) = D^{r-s}(D^{(r-s)K}(D^{t}(\vec{a})))$$

= $D^{r-s}(D^{t}(\vec{a}))$, by induction hypothesis
= $D^{r-s+t}(\vec{a})$
= $D^{t-s}(D^{r}(\vec{a}))$, since $s \le t$
= $D^{t-s}(D^{s}(\vec{a}))$
= $D^{t}(\vec{a})$, holds

By induction, we complete this proof

Theorem 3.13

Proof.

Note that $\{ec{e}_1, ec{e}_2, \cdots, ec{e}_N\}$ is a basis of $(\mathbb{Z}_2)^N$ over \mathbb{Z}_2

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Theorem 3.13

Proof.

Note that $\{ec{e}_1, ec{e}_2, \cdots, ec{e}_N\}$ is a basis of $(\mathbb{Z}_2)^N$ over \mathbb{Z}_2

(a) Claim: $D^r(\vec{e}_i) = D^s(\vec{e}_i)$ for each $i = 1, 2, \cdots, N$

Proof.

Given $i \in \mathbb{N}$ with $1 \le i \le N$ If i = 1, then there is nothing to prove Now, we may assume that $2 \le i \le N$

Theorem 3.13

Proof.

Note that $\{ec{e}_1,ec{e}_2,\cdots,ec{e}_N\}$ is a basis of $(\mathbb{Z}_2)^N$ over \mathbb{Z}_2

(a) Claim: $D^r(\vec{e}_i) = D^s(\vec{e}_i)$ for each $i = 1, 2, \cdots, N$

Proof.

Given $i \in \mathbb{N}$ with $1 \leq i \leq N$ If i = 1, then there is nothing to prove Now, we may assume that $2 \leq i \leq N$ Note that $\vec{e}_i = T^{N-i+1}(\vec{e}_1)$

(continued...)

(a) Claim:
$$D^r(ec{e}_i)=D^s(ec{e}_i)$$
 for each $i=1,2,\cdots,N$

(continued...)

$$D^{r}(\vec{e}_{i}) = D^{r}(T^{N-i+1}(\vec{e}_{1}))$$

= $T^{N-i+1}(D^{r}(\vec{e}_{1}))$, by Lemma 3.7(b)
= $T^{N-i+1}(D^{s}(\vec{e}_{1}))$
= $D^{s}(T^{N-i+1}(\vec{e}_{1}))$, by Lemma 3.7(b)
= $D^{s}(\vec{e}_{i})$

 $\therefore D^r(\vec{e}_i) = D^s(\vec{e}_i)$ for each $i = 1, 2, \cdots, N$

(continued...)

(a) Given $\vec{b} \in (\mathbb{Z}_2)^N$ Finally, we must show that $D^r(\vec{b}) = D^s(\vec{b})$:

(continued...) (a) Given $\vec{b} \in (\mathbb{Z}_2)^N$ Finally, we must show that $D^r(\vec{b}) = D^s(\vec{b})$: $\because \{\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_N\}$ is a basis of $(\mathbb{Z}_2)^N$ over \mathbb{Z}_2 $\therefore \exists c_1, c_2, \cdots, c_N \in \mathbb{Z}_2$ such that $\vec{b} = c_1\vec{e}_1 + c_2\vec{e}_2 + \cdots + c_N\vec{e}_N$

Then, we have:

$$\begin{aligned} \mathcal{D}^{r}(\vec{b}) &= \mathscr{D}^{r}(\vec{b}) \\ &= \mathscr{D}^{r}(c_{1}\vec{e}_{1} + c_{2}\vec{e}_{2} + \dots + c_{N}\vec{e}_{N}) \\ &= c_{1}\mathscr{D}^{r}(\vec{e}_{1}) + c_{2}\mathscr{D}^{r}(\vec{e}_{2}) + \dots + c_{N}\mathscr{D}^{r}(\vec{e}_{N}) \\ & \text{by Lemma 3.11} \\ &= c_{1}D^{r}(\vec{e}_{1}) + c_{2}D^{r}(\vec{e}_{2}) + \dots + c_{N}D^{r}(\vec{e}_{N}) \end{aligned}$$

(continued...) (a) $= c_1 D^r(\vec{e}_1) + c_2 D^r(\vec{e}_2) + \dots + c_N D^r(\vec{e}_N)$ $= c_1 D^s(\vec{e}_1) + c_2 D^s(\vec{e}_2) + \dots + c_N D^s(\vec{e}_N),$ by Claim $= c_1 \mathscr{D}^s(\vec{e}_1) + c_2 \mathscr{D}^s(\vec{e}_2) + \dots + c_N \mathscr{D}^s(\vec{e}_N)$ $= \mathscr{D}^{s}(c_{1}\vec{e}_{1} + c_{2}\vec{e}_{2} + \cdots + c_{N}\vec{e}_{N}),$ by Lemma 3.11 $= \mathscr{D}^{s}(\vec{b})$ $= D^{s}(\vec{b})$

(continued...)

(b) Given $i \in \mathbb{N}$ with $2 \leq i \leq N$

It suffices to show that the period of \vec{e}_i is equal to the period of \vec{e}_1 :

(continued...)

(b) Given $i \in \mathbb{N}$ with $2 \le i \le N$ It suffices to show that the period of \vec{e}_i is equal to the period of \vec{e}_1 : By Lemma 2.1, we may assume that the period of $\vec{e}_1 = n - k$

(continued...)

(b) Given i∈ N with 2 ≤ i ≤ N It suffices to show that the period of d_i is equal to the period of d₁: By Lemma 2.1, we may assume that the period of d₁ = n - k ⇒ D⁰(d₁) = d₁, D(d₁), D²(d₁), ..., Dⁿ⁻¹(d₁) are all distinct

(continued...)

(b) Given i ∈ N with 2 ≤ i ≤ N It suffices to show that the period of *e*_i is equal to the period of *e*₁: By Lemma 2.1, we may assume that the period of *e*₁ = n - k

 $\implies D^0(\vec{e}_1) = \vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), \cdots, D^{n-1}(\vec{e}_1) \text{ are all distinct and } D^n(\vec{e}_1) = D^k(\vec{e}_1)$

(continued...)

(b) Given $i \in \mathbb{N}$ with $2 \leq i \leq N$ It suffices to show that the period of \vec{e}_i is equal to the period of \vec{e}_1 : By Lemma 2.1, we may assume that the period of $\vec{e}_1 = n - k$ $\implies D^0(\vec{e}_1) = \vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), \cdots, D^{n-1}(\vec{e}_1)$ are all distinct and $D^n(\vec{e}_1) = D^k(\vec{e}_1)$ By (a), we know that $D^n(\vec{e}_i) = D^k(\vec{e}_i)$ (*) Claim: $D^0(\vec{e}_i) = \vec{e}_i, D(\vec{e}_i), D^2(\vec{e}_i), \cdots, D^{N-1}(\vec{e}_i)$ are all distinct

(continued...)

(b) Claim:
$$\vec{e}_i, D(\vec{e}_i), D^2(\vec{e}_i), \cdots, D^{N-1}(\vec{e}_i)$$
 are all distinct

Proof.

If not, suppose $\exists a, b \in \mathbb{Z}$ with $0 \le a < b \le n-1$ such that $D^{a}(\vec{e}_{i}) = D^{b}(\vec{e}_{i})$ $\implies T^{i-1}(D^{a}(\vec{e}_{i})) = T^{i-1}(D^{b}(\vec{e}_{i}))$ $\implies D^{a}(T^{i-1}(\vec{e}_{i})) = D^{b}(T^{i-1}(\vec{e}_{i}))$, by Lemma 3.7(b) $\implies D^{a}(\vec{e}_{1}) = D^{b}(\vec{e}_{1})$ which is a contradiction to $D^{0}(\vec{e}_{1}) = T^{a}(\vec{e}_{1}) = D^{a}(\vec{e}_{1}) = D^{a}(\vec{e}_{1})$

$$D^{0}(\vec{e}_{1}) = \vec{e}_{1}, D(\vec{e}_{1}), D^{2}(\vec{e}_{1}), \cdots, D^{n-1}(\vec{e}_{1})$$

are all distinct

(continued...)

(b) By **Claim** and (*), the period of \vec{e}_i is equal to n-k

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...)

(b) By **Claim** and (*), the period of \vec{e}_i is equal to n - k \implies the period of \vec{e}_i is equal to the period of \vec{e}_1

(continued...)

- (b) By **Claim** and (*), the period of \vec{e}_i is equal to n k \implies the period of \vec{e}_i is equal to the period of \vec{e}_1
- (c) It is enough to prove that the period of \vec{a} divides the period of \vec{e}_1 By Lemma 2.1, we may assume that the periods of \vec{a} and \vec{e}_1 are n - k and n' - k', respectively

(continued...)

- (b) By **Claim** and (*), the period of \vec{e}_i is equal to n k \implies the period of \vec{e}_i is equal to the period of \vec{e}_1
- (c) It is enough to prove that the period of \vec{a} divides the period of \vec{e}_1 By Lemma 2.1, we may assume that the periods of \vec{a} and \vec{e}_1 are n - k and n' - k', respectively Write n' - k' = (n - k)q + r, where q, r are nonnegative integers with

$$0 \le r < n - k$$

So, it suffices to show that r = 0:

(continued...)

(c) By Theorem 3.2, $\exists \ \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a}

(continued...)

(c) By Theorem 3.2, $\exists \ \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b}

(continued...)

(c) By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b} $\implies D^n(\vec{b}) = D^k(\vec{b})$

(continued...)

(c) By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b} $\implies D^n(\vec{b}) = D^k(\vec{b})$ Management the period of \vec{a} is n' = n'

Moreover, the period of \vec{e}_1 is n' - k'

(continued...)

(c) By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b} $\implies D^n(\vec{b}) = D^k(\vec{b})$ Moreover, the period of \vec{e}_1 is n' - k' $\implies D^{n'}(\vec{e}_1) = D^{k'}(\vec{e}_1)$

(continued...)

(c) By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b} $\implies D^n(\vec{b}) = D^k(\vec{b})$ Moreover, the period of \vec{e}_1 is n' - k' $\implies D^{n'}(\vec{e}_1) = D^{k'}(\vec{e}_1)$ By (a), we obtain $D^{n'}(\vec{b}) = D^{k'}(\vec{b})$
(continued...)

(c) By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b} $\implies D^n(\vec{b}) = D^k(\vec{b})$ Moreover, the period of \vec{e}_1 is n' - k' $\implies D^{n'}(\vec{e}_1) = D^{k'}(\vec{e}_1)$ By (a), we obtain $D^{n'}(\vec{b}) = D^{k'}(\vec{b})$ Take $\vec{b} = D^{k+k'}(\vec{b})$

(continued...)

(c) By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b} $\implies D^n(\vec{b}) = D^k(\vec{b})$ Moreover, the period of \vec{e}_1 is n' - k' $\implies D^{n'}(\vec{e}_1) = D^{k'}(\vec{e}_1)$ By (a), we obtain $D^{n'}(\vec{b}) = D^{k'}(\vec{b})$ Take $\vec{b} = D^{k+k'}(\vec{b})$ By Lemma 3.12, we obtain $D^{n'-k'}(\vec{b}) = \vec{b}$ \implies $\vec{b} = D^{n'-k'}(\vec{b}) = D^{(n-k)q+r}(\vec{b}) = D^r(D^{(n-k)q}(\vec{b}))$ $= D^r(\vec{b})$, by Lemma 3.12

(continued...)

(c)
$$\implies D^{k+k'}(\vec{b}) = D^{k+k'+r}(\vec{b})$$

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

(continued...)

c)
$$\implies D^{k+k'}(\vec{b}) = D^{k+k'+r}(\vec{b})$$

Write $k' = (n-k)q_0 + r_0$, where q_0, r_0 are nonnegative integers with $0 \le r_0 < n-k$
 \implies

$$D^{k+k'}(\vec{b}) = D^{(k+(n-k)q_0+r_0)}(\vec{b})$$

= $D^{(n-k)q_0}(D^{k+r_0}(\vec{b}))$
= $D^{k+r_0}(\vec{b})$, by Lemma 3.12

and

(c)

(continued...)

 $D^{k+k'+r}(\vec{b}) = D^{k+((n-k)q_0+r_0)+r}(\vec{b})$ $= D^{(n-k)q_0}(D^{k+r_0+r}(\vec{b}))$

 $= D^{k+r_0+r}(ec{b})$, by Lemma 3.12

(*')

Proof for Theorem 3.13

(continued...)

(c)

$$D^{k+k'+r}(\vec{b}) = D^{k+((n-k)q_0+r_0)+r}(\vec{b})$$

= $D^{(n-k)q_0}(D^{k+r_0+r}(\vec{b}))$
= $D^{k+r_0+r}(\vec{b})$, by Lemma 3.12

Then, we have:

$$D^{k+r_0+r}(\vec{b}) = D^{k+k'+r}(\vec{b}) = D^{k+k'}(\vec{b}) = D^{k+r_0}(\vec{b})$$

(c)	Note that	$k + r_0$	$\leq k +$	$r_0 + r + r_0 + $	< k + r	$n_0 + (n_1)$	-k) =	$n + r_0$
-----	-----------	-----------	------------	--	---------	---------------	-------	-----------

(continued...)

(c) Note that $k + r_0 \leq k + r_0 + r < k + r_0 + (n - k) = n + r_0$ $\implies k + r_0 \leq k + r_0 + r \leq (n - 1) + r_0$, since $k + r_0 + r, n + r_0$ are integers On the other hand, $\vec{b}, D(\vec{b}), \cdots, D^k(\vec{b}),$ $D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ are all distinct

(c) Note that
$$k + r_0 \leq k + r_0 + r < k + r_0 + (n - k) = n + r_0$$

 $\implies k + r_0 \leq k + r_0 + r \leq (n - 1) + r_0$, since
 $k + r_0 + r, n + r_0$ are integers
On the other hand, $\vec{b}, D(\vec{b}), \cdots, D^k(\vec{b}),$
 $D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ are all distinct and
 $D^n(\vec{b}) = D^k(\vec{b})$, since the period of \vec{b} is $n - k$

(c) Note that
$$k + r_0 \le k + r_0 + r < k + r_0 + (n - k) = n + r_0$$

 $\implies k + r_0 \le k + r_0 + r \le (n - 1) + r_0$, since
 $k + r_0 + r, n + r_0$ are integers
On the other hand, $\vec{b}, D(\vec{b}), \cdots, D^k(\vec{b}),$
 $D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ are all distinct and
 $D^n(\vec{b}) = D^k(\vec{b})$, since the period of \vec{b} is $n - k$
Then, we have:
 $D^{k+r_0}(\vec{b}), D^{k+r_0+1}(\vec{b}), \cdots, D^{k+r_0+r}(\vec{b}), \cdots, D^{(n-1)+r_0}(\vec{b})$
are all distinct

(c) Note that
$$k + r_0 \leq k + r_0 + r < k + r_0 + (n - k) = n + r_0$$

 $\implies k + r_0 \leq k + r_0 + r \leq (n - 1) + r_0$, since
 $k + r_0 + r$, $n + r_0$ are integers
On the other hand, $\vec{b}, D(\vec{b}), \cdots, D^k(\vec{b}),$
 $D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ are all distinct and
 $D^n(\vec{b}) = D^k(\vec{b})$, since the period of \vec{b} is $n - k$
Then, we have:
 $D^{k+r_0}(\vec{b}), D^{k+r_0+1}(\vec{b}), \cdots, D^{k+r_0+r}(\vec{b}), \cdots, D^{(n-1)+r_0}(\vec{b})$
are all distinct
By (*'), we conclude that $k + r_0 = k + r_0 + r$

(c) Note that
$$k + r_0 \leq k + r_0 + r < k + r_0 + (n - k) = n + r_0$$

 $\implies k + r_0 \leq k + r_0 + r \leq (n - 1) + r_0$, since
 $k + r_0 + r, n + r_0$ are integers
On the other hand, $\vec{b}, D(\vec{b}), \cdots, D^k(\vec{b}),$
 $D^{k+1}(\vec{b}), \cdots, D^{n-1}(\vec{b})$ are all distinct and
 $D^n(\vec{b}) = D^k(\vec{b})$, since the period of \vec{b} is $n - k$
Then, we have:
 $D^{k+r_0}(\vec{b}), D^{k+r_0+1}(\vec{b}), \cdots, D^{k+r_0+r}(\vec{b}), \cdots, D^{(n-1)+r_0}(\vec{b})$
are all distinct
By (*'), we conclude that $k + r_0 = k + r_0 + r$
 $\implies r = 0$
Hence, we complete this proof

Lemma 3.14

Proo<u>f.</u>

(a) Given
$$ec{x}=(x_1,x_2,\cdots,x_N)\in (\mathbb{Z}_2)^N$$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Lemma 3.14

Proof.

(a) Given
$$\vec{x} = (x_1, x_2, \cdots, x_N) \in (\mathbb{Z}_2)^N$$

$$\mathscr{I} + \mathscr{T}(\vec{x}) = \mathscr{I}(\vec{x}) + \mathscr{T}(\vec{x})$$

$$= \mathscr{I}(x_1, x_2, \cdots, x_N) + \mathscr{T}(x_1, x_2, \cdots, x_N)$$

$$= (x_1, x_2, \cdots, x_N) + (x_2, \cdots, x_N, x_1)$$

$$= (x_1 + x_2, \cdots, x_{N-1} + x_N, x_N + x_1)$$

$$= (|x_1 - x_2|, \cdots, |x_{N-1} - x_N|, |x_N - x_1|),$$
by Remark 3.8

$$= \mathscr{D}(x_1, x_2, \cdots, x_N)$$

$$= \mathscr{D}(\vec{x})$$

$$\therefore \mathscr{D} = \mathscr{I} + \mathscr{T}$$

(continued...)

(b) By (a),
$$\mathscr{D}^{2^r} = (\mathscr{I} + \mathscr{T})^{2^r}$$

Claim: $(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$

Proof.

We prove it by induction on r:

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

(continued...)

(b) By (a),
$$\mathscr{D}^{2^r} = (\mathscr{I} + \mathscr{T})^{2^r}$$

Claim: $(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$

Proof.

We prove it by induction on r:

r = 0: It is trivial

(continued...)

(b) By (a),
$$\mathscr{D}^{2^r} = (\mathscr{I} + \mathscr{T})^{2^r}$$

Claim: $(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$

Proof.

We prove it by induction on r: r = 0: It is trivial Suppose r = K holds Then, r = K + 1:

(continued...)

(b) By (a),
$$\mathscr{D}^{2^r} = (\mathscr{I} + \mathscr{T})^{2^r}$$

Claim: $(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$

Proof.

We prove it by induction on r: r = 0: It is trivial Suppose r = K holds Then, r = K + 1:

$$(\mathscr{I} + \mathscr{T})^{2^{K+1}} = ((\mathscr{I} + \mathscr{T})^{2^{K}})^{2}$$

= $(\mathscr{I} + \mathscr{T}^{2^{K}})^{2}$, by induction hypothesis

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

(continued...) (b) Claim: $(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$

(continued...)

$$= \mathscr{I}^{2} + \mathscr{I}\mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K}}\mathscr{I} + (\mathscr{T}^{2^{K}})^{2}$$
$$= \mathscr{I} + \mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K+1}}$$
$$= \mathscr{I} + \mathscr{T}^{2^{K+1}}, \text{ since } \mathscr{T}(\mathbb{Z}_{2}) \subseteq \mathbb{Z}_{2}$$

So, r = K + 1 holds

Note that $\mathscr{T}^N = \mathscr{T}$

(continued...)

b) Claim:
$$(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$$

(continued...)

$$= \mathscr{I}^{2} + \mathscr{I}\mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K}}\mathscr{I} + (\mathscr{T}^{2^{K}})^{2}$$
$$= \mathscr{I} + \mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K+1}}$$
$$= \mathscr{I} + \mathscr{T}^{2^{K+1}}, \text{ since } \mathscr{T}(\mathbb{Z}_{2}) \subset \mathbb{Z}_{2}$$

So, r = K + 1 holds

Note that $\mathscr{T}^N = \mathscr{T}$ By assumption, we know that $\mathscr{T}^{2^r} = \mathscr{T}^s$

(continued...)

b) Claim:
$$(\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{I}^{2^r}$$

(continued...)

$$= \mathscr{I}^{2} + \mathscr{I}\mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K}}\mathscr{I} + (\mathscr{T}^{2^{K}})^{2}$$
$$= \mathscr{I} + \mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K}} + \mathscr{T}^{2^{K+1}}$$
$$= \mathscr{I} + \mathscr{T}^{2^{K+1}}, \text{ since } \mathscr{T}(\mathbb{Z}_{2}) \subset \mathbb{Z}_{2}$$

So, r = K + 1 holds

Note that $\mathscr{T}^N = \mathscr{T}$ By assumption, we know that $\mathscr{T}^{2^r} = \mathscr{T}^s$ $\therefore \mathscr{D}^{2^r} = (\mathscr{I} + \mathscr{T})^{2^r} = \mathscr{I} + \mathscr{T}^{2^r} = \mathscr{I} + \mathscr{T}^s$ Hence, we complete this proof

Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-k

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-kNote that $2^r \equiv 0 \pmod{N}$

Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-kNote that $2^r \equiv 0 \pmod{N}$ By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a}

Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of \vec{a} is n-kNote that $2^r \equiv 0 \pmod{N}$ By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of \vec{b}

Theorem 3.15

Proof.

•.•

By Lemma 2.1, we may assume that the period of \vec{a} is n-kNote that $2^r \equiv 0 \pmod{N}$ By Theorem 3.2, $\exists \vec{b} \in (\mathbb{Z}_2)^N$ with the period of \vec{b} which is equal to the period of \vec{a} such that the cycle of \vec{a} is similar to the cycle of $\vec{b} \implies \exists m \in \mathbb{N}$ such that $D^r(\vec{a}) = mD^s(\vec{b})$, where r, s are nonnegative integers with $k \leq s \leq n-1$

$$D^{N}(\vec{b}) = \mathscr{D}^{N}(\vec{b}), \text{ since } \vec{b} \in (\mathbb{Z}_{2})^{N}$$

= $\mathscr{I} + \mathscr{T}^{0}(\vec{b}), \text{ by Lemma 3.14}$

$$\begin{split} &=\mathscr{I}+\mathscr{I}(\vec{b})\\ &=\mathscr{I}(\vec{b})+\mathscr{I}(\vec{b})\\ &=\vec{0}, \text{ since } \mathscr{I}(\vec{b})\in(\mathbb{Z}_2)^6 \end{split}$$

. [.] .

Proof for Theorem 3.15

(continued...)

$$\begin{split} &=\mathscr{I}+\mathscr{I}(\vec{b})\\ &=\mathscr{I}(\vec{b})+\mathscr{I}(\vec{b})\\ &=\vec{0}, \text{ since } \mathscr{I}(\vec{b})\in(\mathbb{Z}_2)^6 \end{split}$$

$$D^{r+N}(\vec{a}) = D^N(D^r(\vec{a}))$$
$$= D^N(mD^s(\vec{b}))$$
$$= mD^{N+s}(\vec{b})$$
$$= mD^s(D^N(\vec{b}))$$
$$= mD^s(\vec{0})$$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

(continued...)

$$= m\bar{\mathbf{0}}$$

 $= \mathbf{\vec{0}}$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

(continued...)

$$= m\vec{\mathbf{0}}$$

 $= \vec{\mathbf{0}}$

On the other hand, we know that $D(\vec{\mathbf{0}}) = D(0, 0, \dots, 0) = (0, 0, \dots, 0) = \vec{\mathbf{0}} = D^0(\vec{\mathbf{0}})$

(continued...)

$$= m\bar{\mathbf{0}}$$

 $= \mathbf{\vec{0}}$

On the other hand, we know that $D(\vec{0}) = D(0, 0, \dots, 0) = (0, 0, \dots, 0) = \vec{0} = D^0(\vec{0})$ \implies the period of $\vec{0}$ is 1 - 0 = 1 and the 1-cycle of $\vec{0}$ is $\vec{0}$

(continued...)

$$= m\bar{\mathbf{0}}$$

 $= \mathbf{\vec{0}}$

On the other hand, we know that $D(\vec{0}) = D(0, 0, \dots, 0) = (0, 0, \dots, 0) = \vec{0} = D^0(\vec{0})$ \implies the period of $\vec{0}$ is 1 - 0 = 1 and the 1-cycle of $\vec{0}$ is $\vec{0}$ \implies the cycle of \vec{a} is similar to the 1-cycle of $\vec{0}$

Theorem 4.1

Proof.

Given $\vec{a} \in A_6$

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Theorem 4.1

Proof.

Given $\vec{a} \in A_6$ Let $\vec{e}_1 = (1, 0, 0, 0, 0, 0)$
Theorem 4.1

Proof.

 $\begin{array}{l} \mbox{Given } \vec{a} \in A_6 \\ \mbox{Let } \vec{e}_1 = (1,0,0,0,0,0) \\ \implies & D(\vec{e}_1) = (1,0,0,0,0,1) \\ D^2(\vec{e}_1) = (1,0,0,0,1,0) \\ D^3(\vec{e}_1) = (1,0,0,1,1,1) \\ D^4(\vec{e}_1) = (1,0,1,0,0,0) \\ D^5(\vec{e}_1) = (1,1,1,0,0,1) \\ D^6(\vec{e}_1) = (0,0,1,0,1,0) \end{array}$

(continued...)

 $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...)

$$D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$$
$$D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$$
$$= D^{2}(\vec{e}_{1})$$

 \implies the period of \vec{e}_1 is (8-2) = 6

(continued...)

$$D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$$
$$D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$$
$$= D^{2}(\vec{e}_{1})$$

 \implies the period of \vec{e}_1 is (8-2) = 6By Theorem 3.13(c), the period of \vec{a} divides 6 and the maximal period of 6-tuples in A_6 is equal to 6

Proof.

We prove it by enumerating as shown in the following diagrams:

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof.

We prove it by enumerating as shown in the following diagrams:

 $\rightarrow:$ a Ducci process

Lemma 4.2

Proof.

We prove it by enumerating as shown in the following diagrams:

Proof for Lemma 4.2

(continued...)

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

(continued...)

 $\rightarrow:$ a Ducci process

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

(continued...)

 \rightarrow : a Ducci process

DIFFY HEXAGO

Appendix

Proof for Theorem 4.3

Theorem 4.3

Proof.

It follows from Theorem 3.2 and Lemma 4.2.

Lemma 4.4

Proof.

Write e = (1)(2)(3)(4)(5)(6) which is the identity element of \mathcal{D}_6

Lemma 4.4

Proof.

Write e = (1)(2)(3)(4)(5)(6) which is the identity element of \mathcal{D}_6 Claim 1: $e * \vec{a} = \vec{a}, \forall \vec{a} \in A_6$

Lemma 4.4

Proof.

Write e = (1)(2)(3)(4)(5)(6) which is the identity element of \mathcal{D}_6 Claim 1: $e * \vec{a} = \vec{a}, \forall \vec{a} \in A_6$

Proof.

Given
$$\vec{a} = (a_1, a_2, \cdots, a_6) \in A_6$$

 $e * \vec{a} = (a_{e(1)}, a_{e(2)}, \cdots, a_{e(6)})$
 $= (a_1, a_2, \cdots, a_6)$
 $= \vec{a}$

(continued...)

Claim 2: $(\pi_1 \circ \pi_2) * \vec{a} = \pi_1 * (\pi_2 * \vec{a}), \forall \pi_1, \pi_2 \in \mathcal{D}_6$ and $\vec{a} \in A_6$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...)

Claim 2: $(\pi_1 \circ \pi_2) * \vec{a} = \pi_1 * (\pi_2 * \vec{a}), \forall \pi_1, \pi_2 \in \mathcal{D}_6 \text{ and } \vec{a} \in A_6$

Proof.

Given $\pi_1, \pi_2 \in \mathcal{D}_6$ and $\vec{a} = (a_1, a_2, \cdots, a_6) \in A_6$

(continued...)

Claim 2: $(\pi_1 \circ \pi_2) * \vec{a} = \pi_1 * (\pi_2 * \vec{a}), \forall \pi_1, \pi_2 \in \mathcal{D}_6$ and $\vec{a} \in A_6$

Proof.

Given
$$\pi_1, \pi_2 \in \mathcal{D}_6$$
 and $\vec{a} = (a_1, a_2, \cdots, a_6) \in A_6$
Note that

$$(\pi_1 \circ \pi_2) * \vec{a} = (a_{\pi_1 \circ \pi_2(1)}, a_{\pi_1 \circ \pi_2(2)}, \cdots, a_{\pi_1 \circ \pi_2(6)})$$

(continued...)

Claim 2: $(\pi_1 \circ \pi_2) * \vec{a} = \pi_1 * (\pi_2 * \vec{a}), \forall \pi_1, \pi_2 \in \mathcal{D}_6 \text{ and } \vec{a} \in A_6$

Proof.

Given
$$\pi_1, \pi_2 \in \mathcal{D}_6$$
 and $\vec{a} = (a_1, a_2, \cdots, a_6) \in A_6$
Note that

$$(\pi_1 \circ \pi_2) * \vec{a} = (a_{\pi_1 \circ \pi_2(1)}, a_{\pi_1 \circ \pi_2(2)}, \cdots, a_{\pi_1 \circ \pi_2(6)})$$

and

$$\pi_1 * (\pi_2 * \vec{a}) = \pi_1 * (a_{\pi_2(1)}, a_{\pi_2(2)}, \cdots, a_{\pi_2(6)})$$

= $(a_{\pi_1(\pi_2(1))}, a_{\pi_1(\pi_2(2))}, \cdots, a_{\pi_1(\pi_2(6))})$
= $(a_{\pi_1 \circ \pi_2(1)}, a_{\pi_1 \circ \pi_2(2)}, \cdots, a_{\pi_1 \circ \pi_2(6)})$

(continued...)

Claim 2: $(\pi_1 \circ \pi_2) * \vec{a} = \pi_1 * (\pi_2 * \vec{a}), \forall \pi_1, \pi_2 \in \mathcal{D}_6 \text{ and } \vec{a} \in A_6$

Proof.

Given
$$\pi_1, \pi_2 \in \mathcal{D}_6$$
 and $\vec{a} = (a_1, a_2, \cdots, a_6) \in A_6$
Note that

$$(\pi_1 \circ \pi_2) * \vec{a} = (a_{\pi_1 \circ \pi_2(1)}, a_{\pi_1 \circ \pi_2(2)}, \cdots, a_{\pi_1 \circ \pi_2(6)})$$

and

$$\pi_1 * (\pi_2 * \vec{a}) = \pi_1 * (a_{\pi_2(1)}, a_{\pi_2(2)}, \cdots, a_{\pi_2(6)})$$

= $(a_{\pi_1(\pi_2(1))}, a_{\pi_1(\pi_2(2))}, \cdots, a_{\pi_1(\pi_2(6))})$
= $(a_{\pi_1 \circ \pi_2(1)}, a_{\pi_1 \circ \pi_2(2)}, \cdots, a_{\pi_1 \circ \pi_2(6)})$

 $\therefore (\pi_1 \circ \pi_2) * \vec{a} = \pi_1 * (\pi_2 * \vec{a})$

By Claim 1 and Claim 2, we complete this proof

Proof for Remark 4.7

Proof.

By assumption, we know that $a_1, a_2, \cdots, a_6 \in \{0, 1\}$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof for Remark 4.7

Proof.

By assumption, we know that $a_1, a_2, \cdots, a_6 \in \{0, 1\}$ $\implies 1 - a_1, 1 - a_2, \cdots, 1 - a_6 \in \{0, 1\}$

Proof for Remark 4.7

Remark 4.7

Proof.

By assumption, we know that
$$a_1, a_2, \dots, a_6 \in \{0, 1\}$$

 $\implies 1 - a_1, 1 - a_2, \dots, 1 - a_6 \in \{0, 1\}$
 $\implies \vec{a^c} = (1 - a_1, 1 - a_2, \dots, 1 - a_6) \in (\mathbb{Z}_2)^6$

Lemma 4.8

Proof.

Write
$$\vec{a^c} = (b_1, b_2, \cdots, b_6)$$

 $\implies b_i = 1 - a_i, \forall i = 1, 2, \cdots, 6$
Given $\pi \in \mathcal{D}_6$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Lemma 4.8

Proof.

$$\begin{array}{l} \text{Write } \vec{a^c} = (b_1, b_2, \cdots, b_6) \\ \implies b_i = 1 - a_i, \forall i = 1, 2, \cdots, 6 \\ \text{Given } \pi \in \mathcal{D}_6 \\ \text{Note that} \end{array}$$

$$\pi * \vec{a^c} = (b_{\pi(1)}, b_{\pi(2)}, \cdots, b_{\pi(6)})$$
$$= (1 - a_{\pi(1)}, 1 - a_{\pi(2)}, \cdots, 1 - a_{\pi(6)})$$

Lemma 4.8

Proof.

Write
$$\vec{a^c} = (b_1, b_2, \cdots, b_6)$$

 $\implies b_i = 1 - a_i, \forall i = 1, 2, \cdots, 6$
Given $\pi \in \mathcal{D}_6$
Note that

$$\pi * \vec{a^c} = (b_{\pi(1)}, b_{\pi(2)}, \cdots, b_{\pi(6)})$$
$$= (1 - a_{\pi(1)}, 1 - a_{\pi(2)}, \cdots, 1 - a_{\pi(6)})$$

and

$$(\pi * \vec{a})^c = (a_{\pi(1)}, a_{\pi(2)}, \cdots, a_{\pi(6)})^c$$

= $(1 - a_{\pi(1)}, 1 - a_{\pi(2)}, \cdots, 1 - a_{\pi(6)})$

Lemma 4.8

Proof.

Write
$$\vec{a^c} = (b_1, b_2, \cdots, b_6)$$

 $\implies b_i = 1 - a_i, \forall i = 1, 2, \cdots, 6$
Given $\pi \in \mathcal{D}_6$
Note that

$$\pi * \vec{a^c} = (b_{\pi(1)}, b_{\pi(2)}, \cdots, b_{\pi(6)})$$
$$= (1 - a_{\pi(1)}, 1 - a_{\pi(2)}, \cdots, 1 - a_{\pi(6)})$$

and

$$(\pi * \vec{a})^c = (a_{\pi(1)}, a_{\pi(2)}, \cdots, a_{\pi(6)})^c$$

= $(1 - a_{\pi(1)}, 1 - a_{\pi(2)}, \cdots, 1 - a_{\pi(6)})$

 $\therefore \pi * \vec{a^c} = (\pi * \vec{a})^c$

Lemma 4.9

Proo<u>f.</u>

For each
$$\pi \in \mathcal{D}_6$$
, let $Z_{\pi} = \{z \in (\mathbb{Z}_2)^6 \mid \pi * z = z\}$

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Lemma 4.9

Proof.

For each
$$\pi \in \mathcal{D}_6$$
, let $Z_{\pi} = \{z \in (\mathbb{Z}_2)^6 \mid \pi * z = z$
By the Burnside's Lemma, we obtain:

$$|(\mathbb{Z}_2)^6/\equiv| = \frac{1}{|\mathcal{D}_6|} \sum_{\pi \in \mathcal{D}_6} |Z_\pi|$$

= $\frac{1}{12} (2^6 + 2 + 2^2 + 2^3 + 2^2 + 2 + 2^3 + 2^4 + 2^3 + 2^4 + 2^3 + 2^4)$
= $\frac{1}{12} (64 + 2 + 4 + 8 + 4 + 2 + 8 + 16 + 8 + 16 + 8 + 16)$
= $\frac{1}{12} \cdot 156$
= 13

(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$:

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$: By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)], [(1,0,0,0,0,0)], [(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],[(0,0,0,1,1,1)], [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]:

(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$: By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)], [(1,0,0,0,0,0)], [(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],[(0,0,0,1,1,1)], [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]: $[(0,0,0,0,0,0)] = \{(0,0,0,0,0,0)\}$

(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$: By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)], [(1,0,0,0,0,0)], [(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],[(0,0,0,1,1,1)], [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]: $[(0,0,0,0,0,0)] = \{(0,0,0,0,0,0)\}$ $[(1,0,0,0,0,0)] = \{(1,0,0,0,0,0), (0,1,0,0,0,0),$ $(0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1)\}$

(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$: By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)], [(1,0,0,0,0,0)], [(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],[(0,0,0,1,1,1)], [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]: $[(0,0,0,0,0,0)] = \{(0,0,0,0,0,0)\}$ $[(1,0,0,0,0,0)] = \{(1,0,0,0,0,0), (0,1,0,0,0,0),$ $(0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1)\}$ $[(0,0,1,0,0,1)] = \{(0,0,1,0,0,1), (1,0,0,1,0,0), (0,1,0,0,1,0)\}$
(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$: By Lemma 4.8, it is reduced to write out [(0, 0, 0, 0, 0, 0)], [(1, 0, 0, 0, 0, 0)], [(0, 0, 1, 0, 0, 1)], [(1, 0, 0, 0, 0, 1)], [(1, 0, 0, 0, 1, 0)],[(0, 0, 0, 1, 1, 1)], [(0, 0, 1, 0, 1, 1)], [(0, 1, 0, 1, 0, 1)]: $[(0,0,0,0,0,0)] = \{(0,0,0,0,0,0)\}$ $[(1,0,0,0,0,0)] = \{(1,0,0,0,0,0), (0,1,0,0,0,0), (0,1,0,0,0,0), (0,0,0,0), (0,0,0,0), (0,0,0$ (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1) $[(0, 0, 1, 0, 0, 1)] = \{(0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0)\}$ $[(1,0,0,0,0,1)] = \{(1,0,0,0,0,1), (1,1,0,0,0,0), (1,1,0,0,0,0), (1,0,0,0), (1,0,0,0,0), (1,0,0,0),$ $(0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1)\}$

(continued...)

Finally, we enumerate 13 equivalence classes of $(\mathbb{Z}_2)^6$: By Lemma 4.8, it is reduced to write out [(0, 0, 0, 0, 0, 0)], [(1, 0, 0, 0, 0, 0)], [(0, 0, 1, 0, 0, 1)], [(1, 0, 0, 0, 0, 1)], [(1, 0, 0, 0, 1, 0)],[(0, 0, 0, 1, 1, 1)], [(0, 0, 1, 0, 1, 1)], [(0, 1, 0, 1, 0, 1)]: $[(0,0,0,0,0,0)] = \{(0,0,0,0,0,0)\}$ $[(1,0,0,0,0,0)] = \{(1,0,0,0,0,0), (0,1,0,0,0,0), (0,1,0,0,0,0), (0,0,0,0), (0,0,0,0,0,0), (0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0,0,0), (0,0,0),$ (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1) $[(0, 0, 1, 0, 0, 1)] = \{(0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0)\}$ $[(1,0,0,0,0,1)] = \{(1,0,0,0,0,1), (1,1,0,0,0,0), (1,1,0,0,0,0), (1,0,0,0), (1,0,0,0,0), (1,0,0,0),$ $(0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1)\}$ $[(1, 0, 0, 0, 1, 0)] = \{(1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 1, 0, 0, 0), (0, 1, 0, 0, 0), (0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0), (0, 1, 0, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0), (0, 1, 0, 0), (0, 1, 0), (0, 1, 0, 0), (0, 1, 0), (0$ (1, 0, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0), (0, 0, 0, 1, 0, 1)

(continued..)

$$\begin{split} & [(0,0,0,1,1,1)] = \{(0,0,0,1,1,1), (1,0,0,0,1,1), \\ & (1,1,0,0,0,1), (1,1,1,0,0,0), (0,1,1,1,0,0), (0,0,1,1,1,0)\} \end{split}$$

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

(continued..)

$$\begin{split} & [(0,0,0,1,1,1)] = \{(0,0,0,1,1,1),(1,0,0,0,1,1),\\ & (1,1,0,0,0,1),(1,1,1,0,0,0),(0,1,1,1,0,0),(0,0,1,1,1,0)\}\\ & [(0,0,1,0,1,1)] = \{(0,0,1,0,1,1),(1,0,0,1,0,1),\\ & (1,1,0,0,1,0),(0,1,1,0,0,1),(1,0,1,1,0,0),(0,1,0,1,1,0),\\ & (1,1,0,1,0,0),(0,1,1,0,1,0),(0,0,1,1,0,1),(1,0,0,1,1,0),\\ & (0,1,0,0,1,1),(1,0,1,0,0,1)\} \end{split}$$

(continued..)

$$\begin{split} & [(0,0,0,1,1,1)] = \{(0,0,0,1,1,1),(1,0,0,0,1,1),\\ & (1,1,0,0,0,1),(1,1,1,0,0,0),(0,1,1,1,0,0),(0,0,1,1,1,0)\}\\ & [(0,0,1,0,1,1)] = \{(0,0,1,0,1,1),(1,0,0,1,0,1),\\ & (1,1,0,0,1,0),(0,1,1,0,0,1),(1,0,1,1,0,0),(0,1,0,1,1,0),\\ & (1,1,0,1,0,0),(0,1,1,0,1,0),(0,0,1,1,0,1),(1,0,0,1,1,0),\\ & (0,1,0,0,1,1),(1,0,1,0,0,1)\}\\ & [(0,1,0,1,0,1)] = \{(0,1,0,1,0,1),(1,0,1,0,1,0)\} \end{split}$$

Theorem 4.10

(0, 0, 0, 0, 0, 0)	
(本)	
U	
\rightarrow : a Ducci process	

DIFFY HEXAGO

Appendix

Proof for Theorem 4.10

Theorem 4.10

Proof.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

DIFFY HEXAGO

Appendix

Proof for Theorem 4.10

Theorem 4.10

continued...

(0, 1, 1, 0, 1, 1) $\underbrace{1}{\rightarrow}$ $\rightarrow: a Ducci process$

Theorem 4.10

continued...

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

DIFFY HEXAGO

Appendix

Proof for Theorem 4.10

Theorem 4.10

 $\rightarrow:$ a Ducci process

Theorem 4.10

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Proof for Corollary 4.11

Corollary 4.11

Proof.

It follows from Theorem 3.2 and Theorem 4.10.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Theorem 4.<u>12</u>

(continued...)

"(=" By Remark 4.5(a) and Lemma 4.9, we know that $\vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), D^3(\vec{e}_1)$ are all distinct

(continued...)

"⇐" By Remark 4.5(a) and Lemma 4.9, we know that $\vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), D^3(\vec{e}_1)$ are all distinct \therefore the period of \vec{e}_1 is (4-2) = 2

(continued...)

"⇐" By Remark 4.5(a) and Lemma 4.9, we know that $\vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), D^3(\vec{e}_1)$ are all distinct \therefore the period of \vec{e}_1 is (4-2) = 2By assumption, we know that $r \mid 2$ So, we have the following two cases: Case 1: r = 1

(continued...)

"⇐" By Remark 4.5(a) and Lemma 4.9, we know that $\vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), D^3(\vec{e}_1)$ are all distinct \therefore the period of \vec{e}_1 is (4-2) = 2By assumption, we know that $r \mid 2$ So, we have the following two cases: Case 1: r = 1 Choose $\vec{a} = (0, 0, 0, 0, 0, 0) \in (\mathbb{Z}_2)^6 \subset A_6$

(continued...)

"⇐" By Remark 4.5(a) and Lemma 4.9, we know that $\vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), D^3(\vec{e}_1)$ are all distinct \therefore the period of \vec{e}_1 is (4-2) = 2By assumption, we know that $r \mid 2$ So, we have the following two cases: Case 1: r = 1 Choose $\vec{a} = (0, 0, 0, 0, 0, 0) \in (\mathbb{Z}_2)^6 \subset A_6$ By Theorem 4.10, the cycle of \vec{a} is (0, 0, 0, 0, 0, 0) and the period of \vec{a} is 1

(continued...)

" \Leftarrow " By Remark 4.5(a) and Lemma 4.9, we know that $\vec{e}_1, D(\vec{e}_1), D^2(\vec{e}_1), D^3(\vec{e}_1)$ are all distinct \therefore the period of \vec{e}_1 is (4-2)=2By assumption, we know that $r \mid 2$ So, we have the following two cases: Case 1: r = 1 Choose $\vec{a} = (0, 0, 0, 0, 0, 0) \in (\mathbb{Z}_2)^6 \subset A_6$ By Theorem 4.10, the cycle of \vec{a} is (0, 0, 0, 0, 0, 0) and the period of \vec{a} is 1 \implies the period of \vec{a} is r

(continued...)

"⇐"

Case 2: r = 2Take $\vec{a} = (0, 0, 1, 0, 1, 0) \in (\mathbb{Z}_2)^6 \subset A_6$ By Theorem 4.10, the cycle of \vec{a} is (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0) and the period of \vec{a} is 2

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons

(continued...)

" \Leftarrow " Case 2: r = 2Take $\vec{a} = (0, 0, 1, 0, 1, 0) \in (\mathbb{Z}_2)^6 \subset A_6$ By Theorem 4.10, the cycle of \vec{a} is (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0) and the period of \vec{a} is 2 \implies the period of \vec{a} is rBy Case 1 and 2, we complete this proof

Prepare for Lemma 2.6

Remark (2.4)

If
$$0 \le x, y \le M$$
, then $|x - y| \le M$.

Proof

Remark (2.7)

If $0 \le x, y \le M$ with |x - y| = M, then $x, y \in \{0, M\}$ and at least one of them is M.

Proof

Lemma (2.8)

Let
$$\vec{a} = (a_1, a_2, \cdots, a_N)$$
, $\vec{b} = (b_1, b_2, \cdots, b_N) \in A_N$ such that $D(\vec{b}) = \vec{a}$ and $\max \vec{a} = \max \vec{b} = M$.

Lemma (2.8)

Let
$$\vec{a} = (a_1, a_2, \dots, a_N)$$
, $\vec{b} = (b_1, b_2, \dots, b_N) \in A_N$ such that $D(\vec{b}) = \vec{a}$ and $\max \vec{a} = \max \vec{b} = M$.
If $a_i \in \{0, M\}$, $\forall i = 1, 2, \dots, t$ and at least one of them is M , then $b_i \in \{0, M\}$, $\forall i = 1, 2, \dots, t, t + 1$ and at least one of them is M .

Proof

DIFFY HEXAGO

Appendix

A remark about Lemma 2.8

Remark (2.9)

In Lemma 2.8, we know that $1 \le t \le N-1$, since A_N is a collection of N-tuples of nonnegative integers.

Lemma (2.10)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} .

Lemma (2.10)

Let $\vec{a} \in A_N$. Suppose $D^k(\vec{a}), D^{k+1}(\vec{a}), \dots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then, there are at least i+1 cyclic consecutive components of $D^{(n-1)-i}(\vec{a})$ taken from 0 or M such that at least one of them is M, where $M = \max D^k(\vec{a})$.

Proof

Remark (2.11)

In Lemma 2.10, we observe that:

(a)
$$0 \le i \le N - 1$$
.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Remark (2.11)

In Lemma 2.10, we observe that:

(a)
$$0 \le i \le N-1$$
.
(b) If $i \le \min\{n-k-1, N-1\}$, then $D^{(n-1)-i}(\vec{a})$ is in the $(n-k)$ -cycle of \vec{a} .

Proof

A property about the greatest common divisor of \vec{a} in A_N

Lemma (2.18)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. For all nonnegative integers r, s with $r \leq s$, then $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$.

A property about the greatest common divisor of \vec{a} in A_N

Lemma (2.18)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. For all nonnegative integers r, s with $r \leq s$, then $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$. In particular, we have $\operatorname{gcd} D^r(\vec{a}) \leq \operatorname{gcd} D^s(\vec{a})$.

Proof

A property about the greatest common divisor of \vec{a} in A_N

Lemma (2.18)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. For all nonnegative integers r, s with $r \leq s$, then $\operatorname{gcd} D^r(\vec{a}) | \operatorname{gcd} D^s(\vec{a})$. In particular, we have $\operatorname{gcd} D^r(\vec{a}) \leq \operatorname{gcd} D^s(\vec{a})$.

Proof

Example

$ec{a} = (3, 3, 3, 3, 3, 9)$	
$D(\vec{a}) = (0, 0, 0, 0, 6, 6)$	
$D^2(\vec{a}) = (0, 0, 0, 6, 0, 6)$	
$D^3(\vec{a}) = (0, 0, 6, 6, 6, 6)$	

- $\gcd \vec{a} = 3$
- $\operatorname{gcd} D(\vec{a}) = 6$
- $\operatorname{gcd} D^2(\vec{a}) = 6$
- $\operatorname{gcd} D^3(\vec{a}) = 6$

王偉名 WeI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS
Lemma (2.19)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$.

Lemma (2.19)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. Suppose that $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} .

Lemma (2.19)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. Suppose that $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then, we have $\operatorname{gcd} D^r(\vec{a}) = \operatorname{gcd} D^s(\vec{a})$ for all $k \leq r, s \leq n-1$.

Lemma (2.19)

Let $\vec{a} \in A_N$ with $\vec{a} \neq \vec{0}$. Suppose that $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$ is the (n-k)-cycle of \vec{a} . Then, we have $\operatorname{gcd} D^r(\vec{a}) = \operatorname{gcd} D^s(\vec{a})$ for all $k \leq r, s \leq n-1$.

Proof

Example

 $\vec{a} = (0, 1, 2, 2, 1, 0)$ $D(\vec{a}) = (1, 1, 0, 1, 1, 0)$ $D^2(\vec{a}) = (0, 1, 1, 0, 1, 1)$ $D^{3}(\vec{a}) = (1, 0, 1, 1, 0, 1)$ $D^{4}(\vec{a}) = (1, 1, 0, 1, 1, 0)$ $= D(\vec{a})$

Example (2.20)

$$ec{e}_1 = (1, 0, 0, 0, 0, 0) \in A_6$$

 $D(ec{e}_1) = (1, 0, 0, 0, 0, 1)$
 $D^2(ec{e}_1) = (1, 0, 0, 0, 1, 0)$
 $D^3(ec{e}_1) = (1, 0, 0, 1, 1, 1)$
 $D^4(ec{e}_1) = (1, 0, 1, 0, 0, 0)$

 $D^{5}(\vec{e}_{1}) = (1, 1, 1, 0, 0, 1)$ $D^{6}(\vec{e}_{1}) = (0, 0, 1, 0, 1, 0)$ $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

Example (2.20)

$$\vec{e}_1 = (1, 0, 0, 0, 0, 0) \in A_6$$
$$D(\vec{e}_1) = (1, 0, 0, 0, 0, 1)$$
$$D^2(\vec{e}_1) = (1, 0, 0, 0, 1, 0)$$
$$D^3(\vec{e}_1) = (1, 0, 0, 1, 1, 1)$$
$$D^4(\vec{e}_1) = (1, 0, 1, 0, 0, 0)$$

 $D^{5}(\vec{e}_{1}) = (1, 1, 1, 0, 0, 1)$ $D^{6}(\vec{e}_{1}) = (0, 0, 1, 0, 1, 0)$ $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

 \implies the period of \vec{e}_1 is (8-2)=6

Example (2.20)

$$\vec{e}_1 = (1, 0, 0, 0, 0, 0) \in A_6$$
$$D(\vec{e}_1) = (1, 0, 0, 0, 0, 1)$$
$$D^2(\vec{e}_1) = (1, 0, 0, 0, 1, 0)$$
$$D^3(\vec{e}_1) = (1, 0, 0, 1, 1, 1)$$
$$D^4(\vec{e}_1) = (1, 0, 1, 0, 0, 0)$$

 $D^{5}(\vec{e}_{1}) = (1, 1, 1, 0, 0, 1)$ $D^{6}(\vec{e}_{1}) = (0, 0, 1, 0, 1, 0)$ $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

 \implies the period of \vec{e}_1 is (8-2) = 6, and the 6-cycle of \vec{e}_1 is $D^2(\vec{e}_1), D^3(\vec{e}_1), D^4(\vec{e}_1), D^5(\vec{e}_1), D^6(\vec{e}_1), D^7(\vec{e}_1)$

Example (2.20)

$$\begin{split} \vec{e}_1 &= (1,0,0,0,0,0) \in A_6 \\ D(\vec{e}_1) &= (1,0,0,0,0,1) \\ D^2(\vec{e}_1) &= (1,0,0,0,1,0) \\ D^3(\vec{e}_1) &= (1,0,0,1,1,1) \\ D^4(\vec{e}_1) &= (1,0,1,0,0,0) \end{split}$$

 $D^{5}(\vec{e}_{1}) = (1, 1, 1, 0, 0, 1)$ $D^{6}(\vec{e}_{1}) = (0, 0, 1, 0, 1, 0)$ $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

 $\implies \text{the period of } \vec{e}_1 \text{ is } (8-2) = 6, \text{ and the } 6\text{-cycle of } \vec{e}_1 \text{ is } D^2(\vec{e}_1), D^3(\vec{e}_1), D^4(\vec{e}_1), D^5(\vec{e}_1), D^6(\vec{e}_1), D^7(\vec{e}_1)$ Note that $\gcd D^i(\vec{e}_1) = 1 = \max D^i(\vec{e}_1)$ for all $i = 0, 1, \cdots, 7$

Example (2.20)

$$\begin{split} \vec{e}_1 &= (1,0,0,0,0,0) \in A_6 \\ D(\vec{e}_1) &= (1,0,0,0,0,1) \\ D^2(\vec{e}_1) &= (1,0,0,0,1,0) \\ D^3(\vec{e}_1) &= (1,0,0,1,1,1) \\ D^4(\vec{e}_1) &= (1,0,1,0,0,0) \end{split}$$

 $D^{5}(\vec{e}_{1}) = (1, 1, 1, 0, 0, 1)$ $D^{6}(\vec{e}_{1}) = (0, 0, 1, 0, 1, 0)$ $D^{7}(\vec{e}_{1}) = (0, 1, 1, 1, 1, 0)$ $D^{8}(\vec{e}_{1}) = (1, 0, 0, 0, 1, 0)$ $= D^{2}(\vec{e}_{1})$

 $\implies \text{the period of } \vec{e}_1 \text{ is } (8-2) = 6, \text{ and the } 6\text{-cycle of } \vec{e}_1 \text{ is } D^2(\vec{e}_1), D^3(\vec{e}_1), D^4(\vec{e}_1), D^5(\vec{e}_1), D^6(\vec{e}_1), D^7(\vec{e}_1)$ Note that $\gcd D^i(\vec{e}_1) = 1 = \max D^i(\vec{e}_1)$ for all $i = 0, 1, \cdots, 7$ However, $D^0(\vec{e}_1) = \vec{e}_1, D(\vec{e}_1)$ are not in the cycle of \vec{e}_1

A property about the complement of N-tuples in A_N

Lemma (3.4)

Let $\vec{a} = (a_1, a_2, \dots, a_N) \in A_N$ and $\max \vec{a} = M$. Suppose the cycle of \vec{a} is similar to the cycle of \vec{b} , where $\vec{b} \in (\mathbb{Z}_2)^6$ and the period of \vec{b} is equal to the period of \vec{a} .

A property about the complement of N-tuples in A_N

Lemma (3.4)

Let $\vec{a} = (a_1, a_2, \dots, a_N) \in A_N$ and $\max \vec{a} = M$. Suppose the cycle of \vec{a} is similar to the cycle of \vec{b} , where $\vec{b} \in (\mathbb{Z}_2)^6$ and the period of \vec{b} is equal to the period of \vec{a} . If $\vec{a^c} = (M - a_1, M - a_2, \dots, M - a_N)$, then the cycle of $\vec{a^c}$ is similar to the cycle of \vec{b} .

 $=D(\vec{a^c})$

A property about the complement of N-tuples in A_N

Lemma (3.4)

Let $\vec{a} = (a_1, a_2, \dots, a_N) \in A_N$ and $\max \vec{a} = M$. Suppose the cycle of \vec{a} is similar to the cycle of \vec{b} , where $\vec{b} \in (\mathbb{Z}_2)^6$ and the period of \vec{b} is equal to the period of \vec{a} . If $\vec{a^c} = (M - a_1, M - a_2, \dots, M - a_N)$, then the cycle of $\vec{a^c}$ is similar to the cycle of \vec{b} .

Proof

Example

$\vec{a} = (0, 2, 4, 4, 2, 0)$	$\vec{a^c} = (4, 2, 0, 0, 2, 4)$
$D(\vec{a}) = (2, 2, 0, 2, 2, 0)$	$D(\vec{a^c}) = (2, 2, 0, 2, 2, 0)$
$D^2(ec{a}) = (0, 2, 2, 0, 2, 2)$	$D^2(\vec{a^c}) = (0, 2, 2, 0, 2, 2)$
$D^3(ec{a}) = (2,0,2,2,0,2)$	$D^3(\vec{a^c}) = (2, 0, 2, 2, 0, 2)$
$D^4(\vec{a}) = (2, 2, 0, 2, 2, 0) = D(\vec{a})$	$D^4(\vec{a^c}) = (2, 2, 0, 2, 2, 0)$

A remark about the proof in Lemma 3.4

Remark (3.5)

In the proof of Lemma 3.4, $D^{s+1}(\vec{b})$ is in the cycle of \vec{b} .

$$T(x_1, x_2, \cdots, x_{N-1}, x_N) = (x_2, x_3, \cdots, x_N, x_1)$$

for all $(x_1, x_2, \cdots, x_{N-1}, x_N) \in A_N$.

$$T(x_1, x_2, \cdots, x_{N-1}, x_N) = (x_2, x_3, \cdots, x_N, x_1)$$

for all $(x_1, x_2, \cdots, x_{N-1}, x_N) \in A_N$. Clearly, T is well-defined.

$$T(x_1, x_2, \cdots, x_{N-1}, x_N) = (x_2, x_3, \cdots, x_N, x_1)$$

for all $(x_1, x_2, \cdots, x_{N-1}, x_N) \in A_N$. Clearly, T is well-defined. On the other hand, we fix the following notations: $\mathscr{D} = D \mid_{(\mathbb{Z}_2)^N}, \mathscr{T} = T \mid_{(\mathbb{Z}_2)^N}$, and

$$T(x_1, x_2, \cdots, x_{N-1}, x_N) = (x_2, x_3, \cdots, x_N, x_1)$$

for all $(x_1, x_2, \cdots, x_{N-1}, x_N) \in A_N$. Clearly, T is well-defined. On the other hand, we fix the following notations: $\mathscr{D} = D \mid_{(\mathbb{Z}_2)^N}, \mathscr{T} = T \mid_{(\mathbb{Z}_2)^N}$, and $\mathscr{D}^0 = \mathscr{T}^0 = \mathscr{I}$, where \mathscr{I} is the identity on $(\mathbb{Z}_2)^N$.

A property about the complement of N-tuples in cycles

Lemma (3.6)

Let $\vec{a} = (a_1, a_2, \cdots, a_N) \in A_N$ and $\max \vec{a} = M$. Suppose that $D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$

$$D(a), D(a), \cdots, D$$

is the (n-k)-cycle of \vec{a} .

A property about the complement of N-tuples in cycles

Lemma (3.6)

Let $\vec{a} = (a_1, a_2, \cdots, a_N) \in A_N$ and $\max \vec{a} = M$. Suppose that

$$D^k(\vec{a}), D^{k+1}(\vec{a}), \cdots, D^{n-1}(\vec{a})$$

is the (n-k)-cycle of \vec{a} . Then, $\vec{a^c} = (M-a_1, M-a_2, \cdots, M-a_N)$ is in the (n-k)-cycle of \vec{a} if and only if $\vec{a} = \vec{0}$.

A property about D and T

Lemma (3.7)

Let $\vec{x}, \vec{y} \in A_N$ and c be a nonnegative integer, then (a) $T(c\vec{x} + \vec{y}) = cT(\vec{x}) + T(\vec{y}).$ (b) $D \circ T = T \circ D.$

Remark (3.8)

Let $x, y \in \mathbb{Z}_2$. Then, |x - y| = x + y.

Remark (3.9)

Let $\mathscr{L}: (\mathbb{Z}_2)^N \to (\mathbb{Z}_2)^N$ be a function.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Remark (3.9)

Let $\mathscr{L}: (\mathbb{Z}_2)^N \to (\mathbb{Z}_2)^N$ be a function. Then, we know that \mathscr{L} is a linear transformation if and only if $\mathscr{L}(\vec{x} + \vec{y}) = \mathscr{L}(\vec{x}) + \mathscr{L}(\vec{y})$ for all $\vec{x}, \vec{y} \in (\mathbb{Z}_2)^N$.

INTRODUCTION DUCCI Sequences Similar Cycles Diffy Hexagons Appendix A property about ${\mathscr T}$

Lemma (3.10)

 \mathcal{T}^i is a linear transformation for each $i = 0, 1, 2, \cdots$.

INTRODUCTION DUCCI SEQUENCES SIMILAR CYCLES DIFFY HEXAGONS APPENDIX

Lemma (3.11)

 \mathscr{D}^i is a linear transformation for each $i=0,1,2,\cdots$.

Lemma (3.12)

Let $\vec{a} \in A_N$. Suppose that r, s, t are nonnegative integers such that $s \leq r$ and $s \leq t$.

王偉名 WEI-MING WANG DIFFY 六邊形之探討 A STUDY ABOUT DIFFY HEXAGONS

Lemma (3.12)

Let $\vec{a} \in A_N$. Suppose that r, s, t are nonnegative integers such that $s \leq r$ and $s \leq t$. If $D^r(\vec{a}) = D^s(\vec{a})$, then

$$D^{(r-s)i}(D^t(\vec{a})) = D^t(\vec{a})$$

for each $i = 0, 1, 2, \cdots$.

Lemma (3.14)

Let r, s be nonnegative integers. Then, we have:

(a)
$$\mathscr{D} = \mathscr{I} + \mathscr{T}$$
.

王偉名 Wel-Ming Wang Diffy 六邊形之探討 A Study About Diffy Hexagons

Lemma (3.14)

Let r, s be nonnegative integers. Then, we have:

(a)
$$\mathscr{D} = \mathscr{I} + \mathscr{T}$$
.
(b) If $2^r \equiv s \pmod{N}$, then $\mathscr{D}^{2^r} = \mathscr{I} + \mathscr{T}^s$

Theorem (4.3)

```
Let \vec{a} \in A_6. Then, the cycle of \vec{a} is similar to one of the following cycles:
```

```
(i) (1-cycle) (0, 0, 0, 0, 0, 0).
```

Theorem (4.3)

Let $\vec{a} \in A_6$. Then, the cycle of \vec{a} is similar to one of the following cycles:

```
(i) (1-cycle) (0, 0, 0, 0, 0, 0).
```

```
(ii) (3-cycle) (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0).
```

Theorem (4.3)

Let $\vec{a} \in A_6$. Then, the cycle of \vec{a} is similar to one of the following cycles:

```
(i) (1-cycle) (0, 0, 0, 0, 0, 0).
```

(ii) (3-cycle) (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0).

(iii) (6-cycle) (0, 1, 0, 0, 0, 1), (1, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0), (1, 1, 1, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1).

Theorem (4.3)

Let $\vec{a} \in A_6$. Then, the cycle of \vec{a} is similar to one of the following cycles:

```
(i) (1-cycle) (0,0,0,0,0,0).
```

(ii) (3-cycle) (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0).

(iii) (6-cycle) (0, 1, 0, 0, 0, 1), (1, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0), (1, 1, 1, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1).

```
(iv) (6-cycle) (1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 1), (1, 0, 1, 0, 0, 0), (1, 1, 1, 0, 0, 1), (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0).
```

The complement of 6-tuples in $(\mathbb{Z}_2)^6$

Definition (4.6)

Let $\vec{a} = (a_1, a_2, \cdots, a_6) \in (\mathbb{Z}_2)^6$. The *complement of* \vec{a} is defined to be $(1 - a_1, 1 - a_2, \cdots, 1 - a_6)$ and we denote it by $\vec{a^c}$.

The complement of 6-tuples in $(\mathbb{Z}_2)^6$

Definition (4.6)

Let $\vec{a} = (a_1, a_2, \cdots, a_6) \in (\mathbb{Z}_2)^6$. The *complement of* \vec{a} is defined to be $(1 - a_1, 1 - a_2, \cdots, 1 - a_6)$ and we denote it by $\vec{a^c}$.

Remark (4.7)

If
$$\vec{a} = (a_1, a_2, \cdots, a_6) \in (\mathbb{Z}_2)^6$$
, then $\vec{a^c} \in (\mathbb{Z}_2)^6$.

Lemma (4.8)

If $\vec{a} = (a_1, a_2, \cdots, a_6) \in (\mathbb{Z}_2)^6$, then $\pi * \vec{a^c} = (\pi * \vec{a})^c$ for all $\pi \in \mathcal{D}_6$.

Lemma (4.8)

If $\vec{a} = (a_1, a_2, \cdots, a_6) \in (\mathbb{Z}_2)^6$, then $\pi * \vec{a^c} = (\pi * \vec{a})^c$ for all $\pi \in \mathcal{D}_6$.

Proof

Similar cycles of Diffy Hexagons

Corollary (4.11)

Let $\vec{a} \in A_6$. Then, the cycle of \vec{a} is similar to one of the following cycles:

(i) (1-cycle) (0, 0, 0, 0, 0, 0).

Similar cycles of Diffy Hexagons

Corollary (4.11)

Let $\vec{a} \in A_6$. Then, the cycle of \vec{a} is similar to one of the following cycles:

```
(i) (1-cycle) (0,0,0,0,0,0).
(ii) (1-cycle) (0,1,1,0,1,1).
```

Similar cycles of Diffy Hexagons

Corollary (4.11)

Let $\vec{a} \in A_6$. Then, the cycle of \vec{a} is similar to one of the following cycles:

```
(i) (1-cycle) (0, 0, 0, 0, 0, 0).
```

```
(ii) (1-cycle) (0, 1, 1, 0, 1, 1).
```

```
(iii) (2\text{-cycle}) (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0).
```

Proof

Let r, s be positive integers. Suppose that $N = 2^s$ and $\vec{e}_1 = (1, 0, \cdots, 0) \in A_N$.

Let r, s be positive integers. Suppose that $N = 2^s$ and $\vec{e}_1 = (1, 0, \cdots, 0) \in A_N$. By Theorem 3.15, all similar cycles of N-tuples in A_N are 1-cycle of $\vec{0}$

Let r, s be positive integers. Suppose that $N = 2^s$ and $\vec{e}_1 = (1, 0, \cdots, 0) \in A_N$. By Theorem 3.15, all similar cycles of N-tuples in A_N are 1-cycle of $\vec{0}$ which implies the period of every N-tuples in A_N is 1,

Let r, s be positive integers. Suppose that $N = 2^s$ and $\vec{e}_1 = (1, 0, \cdots, 0) \in A_N$. By Theorem 3.15, all similar cycles of N-tuples in A_N are 1-cycle of $\vec{0}$ which implies the period of every N-tuples in A_N is 1, and hence the conclusion in Theorem 4.12, that is r is the period of \vec{a} for some $\vec{a} \in A_N$ if and only if r divides the period of \vec{e}_1 , is true without identification we use in this chapter.

Let r, s be positive integers. Suppose that $N = 2^s$ and $\vec{e}_1 = (1, 0, \cdots, 0) \in A_N$. By Theorem 3.15, all similar cycles of N-tuples in A_N are 1-cycle of $\vec{0}$ which implies the period of every N-tuples in A_N is 1, and hence the conclusion in Theorem 4.12, that is r is the period of \vec{a} for some $\vec{a} \in A_N$ if and only if r divides the period of \vec{e}_1 , is true without identification we use in this chapter. However, above conclusion does not hold in A_6 due to Lemma 4.2.

If we had enough time, we would like to have further discussions about that at what positive integer N above conclusion holds (even if the identification we use in this chapter is necessary).