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.. Diffy Hexagons

The Diffy Hexagons which are generalized Diffy Boxes are games
with the following procedures:
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.. Step 1

Arrange six nonnegative integers around a regular hexagon.
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.. Step 2

Produce another regular hexagon of six nonnegative integers from
the one obtained in Step 1:
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.. Step 2-1

For each adjacent pair of numbers, compute the absolute value of
their difference and place it between them.
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.. Step 2-1
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.. Step 2-2

Remove the original numbers.
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.. Step 2-3

Remove the original regular hexagon.
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.. Step 2-4

Form the new regular hexagon with the remaining numbers.
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.. Step 3

To obtain a sequence of regular hexagons of six nonnegative
integers by performing Step 2 over and over.
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.. Notations

Without loss of generality, we denote a regular hexagon of six
nonnegative integers as follows:

where bi = |ai − ai+1|, ci = |bi − bi+1|, b6 = |a6 − a1|, and
c6 = |b6 − b1|, i = 1, 2, · · · , 5.
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.. Notations

From now on, let N be a positive integer with N ≥ 2

and denote
the set of all N-tuples of nonnegative integers by AN.
Define D : AN → AN by

D(a1, a2, · · · , aN) = ( |a1 − a2|, · · · , |aN−1 − aN|, |aN − a1| )

for all (a1, a2, · · · , aN) ∈ AN.
Then, D is a well-defined function.
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.. Ducci processes

.
Definition (1.1)..

......

The function D : AN → AN defined by

D(a1, a2, · · · , aN) = ( |a1 − a2|, · · · , |aN−1 − aN|, |aN − a1| )

for all (a1, a2, · · · , aN) ∈ AN is called a Ducci process.
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.. Ducci sequences of N-tuples in AN

.
Definition (1.2)..

......

Let a⃗ = (a1, a2, · · · , aN) ∈ AN. A sequence of the form that
a⃗,D(⃗a),D2(⃗a), · · · is called the Ducci sequence of a⃗.

On the other
hand, we denote a⃗ by D0(⃗a).
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.. Diffy Hexagon games
.
Remark (1.3)..

......

Note that a 6-tuple of nonnegative integers is regarded as written
in a regular hexagon, and hence a Ducci sequence of 6-tuples in A6

is regarded as a sequence of regular hexagons, that is, a Diffy
Hexagon game.

D(a1, a2, · · · , a6) = (b1, b2, · · · , b6)
D(b1, b2, · · · , b6) = (c1, c2, · · · , c6)

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

Ducci Sequences
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.. Existence of the period of Ducci sequences
.
Lemma (2.1)..

......
Let a⃗ ∈ AN. Then, there are nonnegative integers n, k with n > k
such that Dn(⃗a) = Dk(⃗a).

.Proof

.Example..

......

a⃗ = (1, 0, 0, 2, 1, 0)

D(⃗a) = (1, 0, 2, 1, 1, 1)

D2(⃗a) = (1, 2, 1, 0, 0, 0)

D3(⃗a) = (1, 1, 1, 0, 0, 1)

D4(⃗a) = (0, 0, 1, 0, 1, 0)

D5(⃗a) = (0, 1, 1, 1, 1, 0)

D6(⃗a) = (1, 0, 0, 0, 1, 0)

D7(⃗a) = (1, 0, 0, 1, 1, 1)

D8(⃗a) = (1, 0, 1, 0, 0, 0)

D9(⃗a) = (1, 1, 1, 0, 0, 1)

= D3(⃗a)
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.. The period and cycle of Ducci sequences

.
Definition (2.2)..

......

Let a⃗ ∈ AN. Suppose that n is the positive integer such that
a⃗,D(⃗a),D2(⃗a), · · · , Dn−1(⃗a) are all distinct and Dn(⃗a) = Dk(⃗a),
where 0 ≤ k ≤ n − 1.

We define the period of a⃗ to be n − k and the (n − k)-cycle of a⃗
(or simply the cycle of a⃗) to be Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a).
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.. The largest component of N-tuples in AN

.
Definition (2.3)..
......Let a⃗ ∈ AN. The the largest component of a⃗ is denoted by max a⃗.
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.. A property about the largest component of N-tuples in AN

.
Lemma (2.5)..

......
Let a⃗ ∈ AN. For all nonnegative integers r, s with r ≥ s, then we
have max Dr(⃗a) ≤ max Ds(⃗a).

.Proof

.Example..

......

a⃗ = (1, 0, 0, 2, 1, 0)

D(⃗a) = (1, 0, 2, 1, 1, 1)

D2(⃗a) = (1, 2, 1, 0, 0, 0)

D3(⃗a) = (1, 1, 1, 0, 0, 1)

D4(⃗a) = (0, 0, 1, 0, 1, 0)

...

max a⃗ = 2

max D(⃗a) = 2

max D2(⃗a) = 2

max D3(⃗a) = 1

max D4(⃗a) = 1

...
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.. The largest component of N-tuples in the cycle

.
Lemma (2.6)..

......

Let a⃗ ∈ AN. Suppose Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) is the
(n − k)-cycle of a⃗. Then,

max Dr(⃗a) = max Ds(⃗a), ∀ k ≤ r, s ≤ n − 1.

.Proof

.Example..

......

a⃗ = (0, 1, 2, 2, 1, 0)

D(⃗a) = (1, 1, 0, 1, 1, 0)

D2(⃗a) = (0, 1, 1, 0, 1, 1)

D3(⃗a) = (1, 0, 1, 1, 0, 1)

D4(⃗a) = (1, 1, 0, 1, 1, 0)

= D(⃗a)
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.. The largest component of N-tuples in the cycle

.
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.. Components of N-tuples in the cycle

.
Theorem (2.12)..

......

Let a⃗ ∈ AN. Suppose Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) is the
(n − k)-cycle of a⃗.

Then, the components of Di(⃗a) are all equal to
either 0 or M for each i = k, k + 1, · · · ,n − 1, where
M = max Dk(⃗a).

.Proof

.Example..

......

a⃗ = (0, 2, 4, 4, 2, 0)

D(⃗a) = (2, 2, 0, 2, 2, 0)

D2(⃗a) = (0, 2, 2, 0, 2, 2)

D3(⃗a) = (2, 0, 2, 2, 0, 2)

D4(⃗a) = (2, 2, 0, 2, 2, 0)

= D(⃗a)
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......
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.. The converse of Theorem 2.12 fails in general

.
Remark (2.13)..

......

If N ̸= 2, then there are a⃗, b⃗ ∈ AN with D(⃗a) = b⃗ such that

max a⃗ = max b⃗ = M

and the components of a⃗, b⃗ aren’t all equal to either 0 or M.

.Proof

.Example..

......
Let N = 6, a⃗ = (2014, 0, 1, 1, 1, 1) and D(⃗a) = b⃗
Then, b⃗ = (2014, 1, 0, 0, 0, 2013)
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..
The greatest common divisor of components of N-tuples
in AN

.
Definition (2.14)..

......
Let a⃗ ∈ AN with a⃗ ̸= 0⃗.

If a⃗ = (a1, a2, · · · , aN), then gcd a⃗ is the
number gcd(a1, a2, · · · , aN).
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......
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.. The relation between max a⃗ and gcd a⃗

.
Lemma (2.15)..

......
Let a⃗ ∈ AN with a⃗ ̸= 0⃗ and n be a nonnegative integer. Then, we
obtain that gcd a⃗ | max Dn(⃗a).

.Proof

.Example..

......

Let a⃗ = (0, 2, 4, 4, 2, 0)
=⇒ gcd(⃗a) = 2

D(⃗a) = (2, 2, 0, 2, 2, 0)

D2(⃗a) = (0, 2, 2, 0, 2, 2)

D3(⃗a) = (2, 0, 2, 2, 0, 2)

D4(⃗a) = (2, 2, 0, 2, 2, 0)

= D(⃗a)
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.. The relation between max a⃗ and gcd a⃗

.
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.. Components of N-tuples in the cycle

.
Corollary (2.16)..

......

Let a⃗ ∈ AN with a⃗ ̸= 0⃗. Suppose Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) is
the (n − k)-cycle of a⃗.

Then, the components of Di(⃗a) are all
equal to either 0 or M for each i = k, k + 1, · · · ,n − 1, where M is
a multiple of gcd a⃗.

.Proof
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.. In Corollary 2.16, M may be any nonnegative integer
.
Example (2.17)..

......

Let d = gcd a⃗,K ≥ 1 be integers and a⃗ = (d, d, d, d, d,Kd) ∈ A6.

D(⃗a) = (0, 0, 0, 0, (K − 1)d, (K − 1)d)
D2(⃗a) = (0, 0, 0, (K − 1)d, 0, (K − 1)d)
D3(⃗a) = (0, 0, (K − 1)d, (K − 1)d, (K − 1)d, (K − 1)d)
D4(⃗a) = (0, (K − 1)d, 0, 0, 0, (K − 1)d)
D5(⃗a) = ((K − 1)d, (K − 1)d, 0, 0, (K − 1)d, (K − 1)d)
D6(⃗a) = (0, (K − 1)d, 0, (K − 1)d, 0, 0)
D7(⃗a) = ((K − 1)d, (K − 1)d, (K − 1)d, (K − 1)d, 0, 0)
D8(⃗a) = (0, 0, 0, (K − 1)d, 0, (K − 1)d) = D2(⃗a)

M = (K − 1)d
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Similar Cycles
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.. Similar cycles

.
Definition (3.1)..

......

Let a⃗ ∈ AN and b⃗ ∈ (Z2)
N. Suppose that

Dk(⃗b),Dk+1(⃗b), · · · ,Dn−1(⃗b) is the (n− k)-cycle of b⃗.

The cycle of
a⃗ is said to be similar to the cycle of b⃗, if ∃m ∈ N such that
Dr(⃗a) = mDs(⃗b), where r, s are nonnegative integers with
k ≤ s ≤ n − 1.

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Similar cycles

.
Definition (3.1)..

......

Let a⃗ ∈ AN and b⃗ ∈ (Z2)
N. Suppose that

Dk(⃗b),Dk+1(⃗b), · · · ,Dn−1(⃗b) is the (n− k)-cycle of b⃗. The cycle of
a⃗ is said to be similar to the cycle of b⃗,

if ∃m ∈ N such that
Dr(⃗a) = mDs(⃗b), where r, s are nonnegative integers with
k ≤ s ≤ n − 1.

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Similar cycles
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.. The period of similar cycles
.
Theorem (3.2)..

......
Let a⃗ ∈ AN. Then, the cycle of a⃗ is similar to the cycle of b⃗, where
b⃗ ∈ (Z2)

N and the period of b⃗ is equal to the period of a⃗.

.Proof

.Example..

......

a⃗ = (0, 2, 4, 4, 2, 0)

D(⃗a) = (2, 2, 0, 2, 2, 0)

D2(⃗a) = (0, 2, 2, 0, 2, 2)

D3(⃗a) = (2, 0, 2, 2, 0, 2)

D4(⃗a) = (2, 2, 0, 2, 2, 0)

= D(⃗a)

b⃗ = (0, 1, 0, 0, 1, 0)

D(⃗b) = (1, 1, 0, 1, 1, 0)

D2(⃗b) = (0, 1, 1, 0, 1, 1)

D3(⃗b) = (1, 0, 1, 1, 0, 1)

D4(⃗b) = (1, 1, 0, 1, 1, 0)

= D(⃗b)
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.. Cycles of N-tuples in AN

.
Remark (3.3)..

......
When we discuss cycles of N-tuples in AN, it is enough to cope
with N-tuples in (Z2)

N according to Theorem 3.2.
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.. Periods of N-tuples in AN

.
Theorem (3.13)..

......

Let e⃗i = (δi1, δi2, · · · , δiN) ∈ AN, where δij is the Kronecker delta
for all i, j ∈ {1, 2, · · · ,N}.

Then, we have:
(a) If Dr(⃗e1) = Ds(⃗e1) for some nonnegative integers

r, s, then we have: Dr(⃗b) = Ds(⃗b),∀ b⃗ ∈ (Z2)
N.

(b) The period of e⃗1, e⃗2, · · · , e⃗N are all identical.
(c) If a⃗ ∈ AN, then the period of a⃗ divides the period of

e⃗1. In particular, the maximal period of N-tuples in
AN is equal to the period of e⃗1.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Periods of N-tuples in AN

.
Theorem (3.13)..

......

Let e⃗i = (δi1, δi2, · · · , δiN) ∈ AN, where δij is the Kronecker delta
for all i, j ∈ {1, 2, · · · ,N}. Then, we have:

(a) If Dr(⃗e1) = Ds(⃗e1) for some nonnegative integers
r, s

, then we have: Dr(⃗b) = Ds(⃗b),∀ b⃗ ∈ (Z2)
N.

(b) The period of e⃗1, e⃗2, · · · , e⃗N are all identical.
(c) If a⃗ ∈ AN, then the period of a⃗ divides the period of

e⃗1. In particular, the maximal period of N-tuples in
AN is equal to the period of e⃗1.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Periods of N-tuples in AN

.
Theorem (3.13)..

......

Let e⃗i = (δi1, δi2, · · · , δiN) ∈ AN, where δij is the Kronecker delta
for all i, j ∈ {1, 2, · · · ,N}. Then, we have:

(a) If Dr(⃗e1) = Ds(⃗e1) for some nonnegative integers
r, s, then we have: Dr(⃗b) = Ds(⃗b),∀ b⃗ ∈ (Z2)

N.

(b) The period of e⃗1, e⃗2, · · · , e⃗N are all identical.
(c) If a⃗ ∈ AN, then the period of a⃗ divides the period of

e⃗1. In particular, the maximal period of N-tuples in
AN is equal to the period of e⃗1.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Periods of N-tuples in AN

.
Theorem (3.13)..

......

Let e⃗i = (δi1, δi2, · · · , δiN) ∈ AN, where δij is the Kronecker delta
for all i, j ∈ {1, 2, · · · ,N}. Then, we have:

(a) If Dr(⃗e1) = Ds(⃗e1) for some nonnegative integers
r, s, then we have: Dr(⃗b) = Ds(⃗b),∀ b⃗ ∈ (Z2)

N.

(b) The period of e⃗1, e⃗2, · · · , e⃗N are all identical.

(c) If a⃗ ∈ AN, then the period of a⃗ divides the period of
e⃗1. In particular, the maximal period of N-tuples in
AN is equal to the period of e⃗1.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Periods of N-tuples in AN

.
Theorem (3.13)..

......

Let e⃗i = (δi1, δi2, · · · , δiN) ∈ AN, where δij is the Kronecker delta
for all i, j ∈ {1, 2, · · · ,N}. Then, we have:

(a) If Dr(⃗e1) = Ds(⃗e1) for some nonnegative integers
r, s, then we have: Dr(⃗b) = Ds(⃗b),∀ b⃗ ∈ (Z2)

N.

(b) The period of e⃗1, e⃗2, · · · , e⃗N are all identical.
(c) If a⃗ ∈ AN, then the period of a⃗ divides the period of

e⃗1.

In particular, the maximal period of N-tuples in
AN is equal to the period of e⃗1.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Periods of N-tuples in AN

.
Theorem (3.13)..

......

Let e⃗i = (δi1, δi2, · · · , δiN) ∈ AN, where δij is the Kronecker delta
for all i, j ∈ {1, 2, · · · ,N}. Then, we have:

(a) If Dr(⃗e1) = Ds(⃗e1) for some nonnegative integers
r, s, then we have: Dr(⃗b) = Ds(⃗b),∀ b⃗ ∈ (Z2)

N.

(b) The period of e⃗1, e⃗2, · · · , e⃗N are all identical.
(c) If a⃗ ∈ AN, then the period of a⃗ divides the period of

e⃗1. In particular, the maximal period of N-tuples in
AN is equal to the period of e⃗1.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Cycles of 2r-tuples in A2r

.
Theorem (3.15)..

......
Let r be a positive integer. Suppose that N = 2r.

If a⃗ ∈ AN, then
the cycle of a⃗ is similar to the 1-cycle of 0⃗.

.Proof

.Example..

......

a⃗ = (0, 1, 2, 0)

D(⃗a) = (1, 1, 2, 0)

D2(⃗a) = (0, 1, 2, 1)

D3(⃗a) = (1, 1, 1, 1)

D4(⃗a) = (0, 0, 0, 0)

D5(⃗a) = (0, 0, 0, 0)

= D4(⃗a)
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Diffy Hexagons
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.. Introduction

According to Remark 1.3, we shall concentrate on the cycles of
6-tuples in A6 in this chapter.
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.. The period of 6-tuples in A6

.
Theorem (4.1)..

......
The period of 6-tuples in A6 divides 6.

In particular, the maximal
period of 6-tuples in A6 is equal to 6.

.Proof

.Example..

......

e⃗1 = (1, 0, 0, 0, 0, 0)

D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

D5(⃗e1) = (1, 1, 1, 0, 0, 1)

D6(⃗e1) = (0, 0, 1, 0, 1, 0)

D7(⃗e1) = (0, 1, 1, 1, 1, 0)

D8(⃗e1) = (1, 0, 0, 0, 1, 0)

= D2(⃗e1)
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

If b⃗ ∈ (Z2)
6, then the cycle of b⃗ is one of the followings:

(i) (1-cycle) (0, 0, 0, 0, 0, 0)

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

.

(1, 0, 1, 0, 1, 0)

→: a Ducci process
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

If b⃗ ∈ (Z2)
6, then the cycle of b⃗ is one of the followings:

(i) (1-cycle) (0, 0, 0, 0, 0, 0)

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

.

(1, 0, 1, 0, 1, 0)

→: a Ducci process
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

(ii) (3-cycle) (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0)

..

(0, 1, 1, 0, 1, 1)

.(1, 1, 0, 1, 1, 0) .(1, 0, 1, 1, 0, 1)

.

(1, 0, 1, 1, 0, 0)

.

(1, 0, 0, 0, 1, 1)

.

(0, 1, 1, 1, 0, 0)

.

(0, 0, 1, 0, 0, 1)

.

(1, 1, 1, 0, 0, 0)

.

(0, 0, 0, 1, 1, 1)

.

(0, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 1, 0)

.

(1, 1, 0, 0, 0, 1)

→: a Ducci process
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(ii) (3-cycle) (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0)

..

(0, 1, 1, 0, 1, 1)

.(1, 1, 0, 1, 1, 0) .(1, 0, 1, 1, 0, 1).

(1, 0, 1, 1, 0, 0)

.

(1, 0, 0, 0, 1, 1)

.

(0, 1, 1, 1, 0, 0)

.

(0, 0, 1, 0, 0, 1)

.

(1, 1, 1, 0, 0, 0)

.

(0, 0, 0, 1, 1, 1)

.

(0, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 1, 0)

.

(1, 1, 0, 0, 0, 1)

→: a Ducci process
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

(iii) (6-cycle) (0, 1, 0, 0, 0, 1), (1, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0),
(1, 1, 1, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1)

..(0, 1, 0, 0, 0, 1) . (1, 1, 0, 0, 1, 1).

(0, 0, 1, 1, 1, 1)

.

(0, 1, 0, 1, 0, 0)

.

(0, 0, 0, 1, 0, 1)

.

(1, 1, 1, 1, 0, 0)

.
(1, 1, 0, 0, 0, 0)

.

(0, 1, 0, 0, 0, 0)

.

(1, 0, 1, 1, 1, 1)

.
(1, 0, 1, 1, 1, 0)

.

(1, 0, 0, 1, 0, 1)

.

(0, 1, 1, 0, 1, 0)

.

(0, 0, 1, 1, 0, 0)

.
(1, 1, 1, 0, 1, 1)

.

(0, 0, 0, 1, 0, 0)

.

(1, 0, 1, 0, 1, 1)

.

(1, 0, 0, 1, 1, 0)

.

(0, 1, 1, 0, 0, 1)

.

(0, 0, 0, 0, 1, 1)

.

(1, 1, 1, 1, 1, 0)

.

(0, 0, 0, 0, 0, 1)

.

(1, 1, 1, 0, 1, 0)

.
(1, 0, 1, 0, 0, 1)

.

(0, 1, 0, 1, 1, 0)

→: a Ducci process
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

(iii) (6-cycle) (0, 1, 0, 0, 0, 1), (1, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0),
(1, 1, 1, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1)

..(0, 1, 0, 0, 0, 1) . (1, 1, 0, 0, 1, 1).

(0, 0, 1, 1, 1, 1)

.

(0, 1, 0, 1, 0, 0)

.

(0, 0, 0, 1, 0, 1)

.

(1, 1, 1, 1, 0, 0)

.
(1, 1, 0, 0, 0, 0)

.

(0, 1, 0, 0, 0, 0)

.

(1, 0, 1, 1, 1, 1)

.
(1, 0, 1, 1, 1, 0)

.

(1, 0, 0, 1, 0, 1)

.

(0, 1, 1, 0, 1, 0)

.

(0, 0, 1, 1, 0, 0)

.
(1, 1, 1, 0, 1, 1)

.

(0, 0, 0, 1, 0, 0)

.

(1, 0, 1, 0, 1, 1)

.

(1, 0, 0, 1, 1, 0)

.

(0, 1, 1, 0, 0, 1)

.

(0, 0, 0, 0, 1, 1)

.

(1, 1, 1, 1, 1, 0)

.

(0, 0, 0, 0, 0, 1)

.

(1, 1, 1, 0, 1, 0)

.
(1, 0, 1, 0, 0, 1)

.

(0, 1, 0, 1, 1, 0)

→: a Ducci process
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

(iv) (6-cycle) (1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 1), (1, 0, 1, 0, 0, 0),
(1, 1, 1, 0, 0, 1), (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0)

..(1, 0, 0, 0, 1, 0) . (1, 0, 0, 1, 1, 1).

(0, 1, 1, 1, 1, 0)

.

(1, 0, 1, 0, 0, 0)

.

(0, 0, 1, 0, 1, 0)

.

(1, 1, 1, 0, 0, 1)

.
(1, 0, 0, 0, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

.
(0, 1, 1, 1, 0, 1)

.

(0, 0, 1, 0, 1, 1)

.

(1, 1, 0, 1, 0, 0)

.

(0, 1, 1, 0, 0, 0)

.
(1, 1, 0, 1, 1, 1)

.

(0, 0, 1, 0, 0, 0)

.

(0, 1, 0, 1, 1, 1)

.

(1, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 0, 1)

.

(0, 0, 0, 1, 1, 0)

.

(1, 1, 1, 1, 0, 1)

.

(0, 0, 0, 0, 1, 0)

.

(1, 1, 0, 1, 0, 1)

.
(1, 0, 1, 1, 0, 0)

.

(0, 1, 0, 0, 1, 1)

→: a Ducci process
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.. Cycles of 6-tuples in (Z2)
6

.
Lemma (4.2)..

......

(iv) (6-cycle) (1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 1), (1, 0, 1, 0, 0, 0),
(1, 1, 1, 0, 0, 1), (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0)

..(1, 0, 0, 0, 1, 0) . (1, 0, 0, 1, 1, 1).

(0, 1, 1, 1, 1, 0)

.

(1, 0, 1, 0, 0, 0)

.

(0, 0, 1, 0, 1, 0)

.

(1, 1, 1, 0, 0, 1)

.
(1, 0, 0, 0, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

.
(0, 1, 1, 1, 0, 1)

.

(0, 0, 1, 0, 1, 1)

.

(1, 1, 0, 1, 0, 0)

.

(0, 1, 1, 0, 0, 0)

.
(1, 1, 0, 1, 1, 1)

.

(0, 0, 1, 0, 0, 0)

.

(0, 1, 0, 1, 1, 1)

.

(1, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 0, 1)

.

(0, 0, 0, 1, 1, 0)

.

(1, 1, 1, 1, 0, 1)

.

(0, 0, 0, 0, 1, 0)

.

(1, 1, 0, 1, 0, 1)

.
(1, 0, 1, 1, 0, 0)

.

(0, 1, 0, 0, 1, 1)

→: a Ducci process
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.. Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple (a1, a2, a3, a4, a5, a6) in A6 is regarded
as written in a regular hexagon.

However, regular hexagons have symmetries under rotations and
reflections, but (a1, a2, a3, a4, a5, a6) does not.
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.. Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple (a1, a2, a3, a4, a5, a6) in A6 is regarded
as written in a regular hexagon.
However, regular hexagons have symmetries under rotations and
reflections, but (a1, a2, a3, a4, a5, a6) does not.
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.. Prepare for an identification on Ducci sequences
Write D6 = {(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25)
(36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45),
(2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)}

which is the
permutation group corresponding to all possible rotations and
reflections of the regular hexagon.
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Write D6 = {(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25)
(36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45),
(2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)} which is the
permutation group corresponding to all possible rotations and
reflections of the regular hexagon.
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.. Prepare for an identification on Ducci sequences

Define ∗ : D6 × A6 → A6 by

π ∗ (a1, a2, · · · , a6) = (aπ(1), aπ(2), · · · , aπ(6))

for all π ∈ D6 and (a1, a2, · · · , a6) ∈ A6.

Clearly, ∗ is well-defined.
.
Lemma (4.4)..
......∗ is a left group action of D6 on A6.

.Proof
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.. Prepare for an identification on Ducci sequences
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.. Prepare for an identification on Ducci sequences

Define ∗ : D6 × A6 → A6 by

π ∗ (a1, a2, · · · , a6) = (aπ(1), aπ(2), · · · , aπ(6))

for all π ∈ D6 and (a1, a2, · · · , a6) ∈ A6.
Clearly, ∗ is well-defined.
.
Lemma (4.4)..
......∗ is a left group action of D6 on A6.

.Proof
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.. An identification on Ducci sequences

For all x⃗, y⃗ ∈ A6, define x⃗ ≡ y⃗ by x⃗ = π ∗ y⃗ for some π ∈ D6.

Then, ≡ is the equivalence relation on A6 induced by D6 and we
denote an equivalence class of A6 by [(a1, a2, · · · , a6)], where
(a1, a2, · · · , a6) ∈ A6.
From now on, we identify two 6-tuples x⃗, y⃗ in A6, written by x⃗ = y⃗,
if and only if x⃗ ≡ y⃗.
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.. An identification on Ducci sequences

For all x⃗, y⃗ ∈ A6, define x⃗ ≡ y⃗ by x⃗ = π ∗ y⃗ for some π ∈ D6.
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.. An identification on Ducci sequences

.
Remark (4.5)..

......

In our identification, we observe that:
(a) If a⃗, b⃗ ∈ A6, then a⃗ = b⃗ if and only if [ a⃗ ] = [ b⃗ ].

(b) According to Remark 1.3, a sequence of regular
hexagons, that is, a Diffy Hexagon game, is actually
a Ducci sequence of 6-tuples in A6.
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.. An identification on Ducci sequences

.
Remark (4.5)..

......

In our identification, we observe that:
(a) If a⃗, b⃗ ∈ A6, then a⃗ = b⃗ if and only if [ a⃗ ] = [ b⃗ ].
(b) According to Remark 1.3, a sequence of regular

hexagons, that is, a Diffy Hexagon game, is actually
a Ducci sequence of 6-tuples in A6.
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.. Diffy Hexagons whose components are consisting of {0, 1}
.
Lemma (4.9)..

......

There are 13 equivalence classes of (Z2)
6.

In fact, they are:
(0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1), (0, 0, 1, 0, 0, 1), (0, 0, 1, 0, 1, 1),
(0, 1, 0, 1, 0, 1), (0, 1, 1, 0, 1, 1), (0, 1, 1, 1, 0, 1), (0, 1, 1, 1, 1, 1),
(1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 1),
and (1, 1, 1, 1, 1, 1).

.Proof
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6. In fact, they are:
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..
Cycles of Diffy Hexagons whose components are consisting
of {0, 1}

.
Theorem (4.10)..

......

Let b⃗ ∈ (Z2)
6. Then, the cycle of b⃗ is one of the followings:

(i) (1-cycle) (0, 0, 0, 0, 0, 0)

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

→: a Ducci process
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6. Then, the cycle of b⃗ is one of the followings:
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..
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.(1, 1, 1, 1, 1, 1).
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..
Cycles of Diffy Hexagons whose components are consisting
of {0, 1}

.
Theorem (4.10)..

......

(ii) (1-cycle) (0, 1, 1, 0, 1, 1)

..

(0, 1, 1, 0, 1, 1)

.(0, 0, 1, 0, 0, 1).

(0, 0, 0, 1, 1, 1)

→: a Ducci process
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..
Cycles of Diffy Hexagons whose components are consisting
of {0, 1}

.
Theorem (4.10)..

......

(ii) (1-cycle) (0, 1, 1, 0, 1, 1)

..

(0, 1, 1, 0, 1, 1)

.(0, 0, 1, 0, 0, 1).

(0, 0, 0, 1, 1, 1)

→: a Ducci process
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..
Cycles of Diffy Hexagons whose components are consisting
of {0, 1}

.
Theorem (4.10)..

......

(iii) (2-cycle) (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0)

.. (1, 0, 0, 1, 1, 1).(1, 0, 0, 0, 1, 0)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

→: a Ducci process
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..
Cycles of Diffy Hexagons whose components are consisting
of {0, 1}

.
Theorem (4.10)..

......

(iii) (2-cycle) (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0)

.. (1, 0, 0, 1, 1, 1).(1, 0, 0, 0, 1, 0) .

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

→: a Ducci process
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.. The period of Diffy Hexagons

.
Theorem (4.12)..

......

Let e⃗1 = (1, 0, 0, 0, 0, 0) ∈ A6. If r is a positive integer, then r is
the period of a⃗ for some a⃗ ∈ A6 if and only if r divides the period
of e⃗1.

.Proof
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.. Proof for Lemma 2.1

.Lemma 2.1

.Proof...

......

Write a⃗ = (a1, a2, · · · , aN)
Let M = max{a1, a2, · · · , aN}

=⇒ There are at most (M + 1)N different N-tuples which are
obtained by performing Ducci processes on a⃗, and hence there are
nonnegative integers n, k with n > k such that Dn(⃗a) = Dk(⃗a)
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.Proof...
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.. Proof for Remark 2.4

.Remark 2.4

.Proof...

......Note that −M ≤ x − y ≤ M

, then we obtain |x − y| ≤ M
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.. Proof for Remark 2.4

.Remark 2.4

.Proof...

......Note that −M ≤ x − y ≤ M, then we obtain |x − y| ≤ M
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.. Proof for Lemma 2.5

.Lemma 2.5

.Proof...

......

Given nonnegative integers r, s with r ≥ s

If r = s, there is nothing to prove
Now, we may assume that r > s
It suffices to show that max Ds+1(⃗a) ≤ max Ds(⃗a):
Write Ds(⃗a) = (x1, x2, · · · , xN) and Ds+1(⃗a) = (y1, y2, · · · , yN),
where

y1 = |x1 − x2|, · · · , yN−1 = |xN−1 − xN|, yN = |xN − x1|

∵ 0 ≤ x1, x2, · · · , xN ≤ max Ds(⃗a)
∴ By Remark 2.4, yi ≤ max Ds(⃗a) for all i = 1, 2, · · · ,N
=⇒ max Ds+1(⃗a) ≤ max Ds(⃗a)
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.. Proof for Lemma 2.5
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.. Proof for Lemma 2.6

.Lemma 2.6

.Proof...

......

Given k ≤ r, s ≤ n − 1
We may assume that r ≤ s

If r = s, then it is trivial
Suppose r < s, then max Ds(⃗a) ≤ max Dr(⃗a) by Lemma 2.5
Now, look at the Ducci sequence of Ds(⃗a):

Ds(⃗a),Ds+1(⃗a), · · · ,Dn−1(⃗a),
Dn(⃗a) = Dk(⃗a),Dk+1(⃗a), · · · ,Dr(⃗a)

By Lemma 2.5, we know that
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.. Proof for Lemma 2.6

.
(continued...)..

......

max Dr(⃗a) ≤ max Dk(⃗a) = max Dn(⃗a)
≤ max Dn−1(⃗a) ≤ max Ds(⃗a)

Therefore, max Dr(⃗a) ≤ max Ds(⃗a)
So, we conclude that max Dr(⃗a) = max Ds(⃗a)
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.. Proof for Lemma 2.6

.
(continued...)..

......
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.. Proof for Lemma 2.6

.
(continued...)..
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.. Proof for Remark 2.7

.Remark 2.7

.Proof...

......

Since |x − y| = M, we obtain x − y = ±M

Case 1: x − y = M
=⇒ M + y = x ≤ M
=⇒ y ≤ 0
By assumption, y ≥ 0
∴ y = 0
=⇒ x = M
Therefore, x, y ∈ {0,M} and at least one of them is M
Case 2: x − y = −M
=⇒ x + M = y ≤ M
=⇒ x ≤ 0
Note that x ≥ 0
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.. Proof for Remark 2.7

.
(continued...)..

......

∴ x = 0

=⇒ y = M
Hence, x, y ∈ {0,M} and at least one of them is M
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.. Proof for Remark 2.7

.
(continued...)..
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.. Proof for Remark 2.7

.
(continued...)..

......

∴ x = 0
=⇒ y = M
Hence, x, y ∈ {0,M} and at least one of them is M

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.8

.Lemma 2.8

.Proof...

......

We prove it by induction on t:

t=1:
Note that M = a1 = |b1 − b2| and 0 ≤ b1, b2 ≤ M
By Remark 2.7, b1, b2 ∈ {0,M} and at least one of them is M,
holds
Suppose t = 1, 2, · · · ,K holds
Then, t = K + 1:
By assumption, we have the following four cases:
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Case 3: a1 = aK+1 = M and a2 = a3 = · · · = aK = 0
Case 4: ∃ 2 ≤ i ≤ K such that ai = M
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Case 1: a1 = M and a2 = a3 = · · · = aK = aK+1 = 0

=⇒ b2 = b3 = · · · = bK = bK+1 = bK+2, since D(⃗b) = a⃗
∵ M = a1 = |b1 − b2| and 0 ≤ b1, b2 ≤ M
∴ By Remark 2.7, b1, b2 ∈ {0,M} and at least one of them is M
Therefore, we obtain

b1, b2, · · · , bK, bK+1, bK+2 ∈ {0,M}

and at least one of them is M, holds
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Case 2: aK+1 = M and a1 = a2 = a3 = · · · = aK = 0

=⇒ b1 = b2 = · · · = bK = bK+1, since D(⃗b) = a⃗
∵ M = aK+1 = |bK+1 − bK+2| and 0 ≤ bK+1, bK+2 ≤ M
∴ By Remark 2.7, we obtain bK+1, bK+2 ∈ {0,M} and at least one
of them is M
=⇒ b1, b2, · · · , bK, bK+1, bK+2 ∈ {0,M} and at least one of them
is M, holds

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.8

.
(continued...)..

......

Case 2: aK+1 = M and a1 = a2 = a3 = · · · = aK = 0
=⇒ b1 = b2 = · · · = bK = bK+1, since D(⃗b) = a⃗

∵ M = aK+1 = |bK+1 − bK+2| and 0 ≤ bK+1, bK+2 ≤ M
∴ By Remark 2.7, we obtain bK+1, bK+2 ∈ {0,M} and at least one
of them is M
=⇒ b1, b2, · · · , bK, bK+1, bK+2 ∈ {0,M} and at least one of them
is M, holds

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.8

.
(continued...)..

......

Case 2: aK+1 = M and a1 = a2 = a3 = · · · = aK = 0
=⇒ b1 = b2 = · · · = bK = bK+1, since D(⃗b) = a⃗
∵ M = aK+1 = |bK+1 − bK+2| and 0 ≤ bK+1, bK+2 ≤ M

∴ By Remark 2.7, we obtain bK+1, bK+2 ∈ {0,M} and at least one
of them is M
=⇒ b1, b2, · · · , bK, bK+1, bK+2 ∈ {0,M} and at least one of them
is M, holds

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.8

.
(continued...)..

......

Case 2: aK+1 = M and a1 = a2 = a3 = · · · = aK = 0
=⇒ b1 = b2 = · · · = bK = bK+1, since D(⃗b) = a⃗
∵ M = aK+1 = |bK+1 − bK+2| and 0 ≤ bK+1, bK+2 ≤ M
∴ By Remark 2.7, we obtain bK+1, bK+2 ∈ {0,M} and at least one
of them is M

=⇒ b1, b2, · · · , bK, bK+1, bK+2 ∈ {0,M} and at least one of them
is M, holds

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.8

.
(continued...)..

......
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Case 3: a1 = aK+1 = M and a2 = a3 = · · · = aK = 0
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b1, b2, · · · , bK, bK+1, bK+2 ∈ {0,M}

and at least one of them is M, holds
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Case 4: ∃ 2 ≤ i ≤ K such that ai = M

∵ a1, a2, · · · , ai ∈ {0,M} and ai = M with 2 ≤ i ≤ K
∴ By induction hypothesis, b1, b2, · · · , bi, bi+1 ∈ {0,M} and at
least one of them is M
Note that ai = M, ai+1, · · · , aK+1 ∈ {0,M} and

2 = (K + 1)− (K − 1) ≤ (K + 1)− (i − 1)

≤ (K + 1)− (2− 1)

= K
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Since Ducci processes are cyclic,

we obtain

bi, bi+1, · · · , bK, bK+1, bK+2 ∈ {0,M}

and at least one of them is M, by induction hypothesis
Hence, we conclude that

b1, b2, · · · , bi, bi+1, · · · , bK, bK+1, bK+2 ∈ {0,M}

and at least one of them is M, holds
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We prove it by induction on i:

i = 0:
By Lemma 2.6, max Dn−1(⃗a) = max Dk(⃗a) = M
=⇒ there is a component of Dn−1(⃗a) is M
=⇒ there is one cyclic consecutive component of Dn−1(⃗a) which
is taken from 0
or M such that at least one of them is M, holds
Suppose i = K holds
Then i = K + 1:
We must prove that there are at least (K + 1) + 1 cyclic
consecutive components of D(n−1)−(K+1)(⃗a) taken from 0 or M
such that at least one of them is M:
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is taken from 0
or M such that at least one of them is M, holds
Suppose i = K holds
Then i = K + 1:
We must prove that there are at least (K + 1) + 1 cyclic
consecutive components of D(n−1)−(K+1)(⃗a) taken from 0 or M
such that at least one of them is M:
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.. Proof for Lemma 2.10

.
(continued...)..

......

Write

D(n−1)−(K+1)(⃗a) = (x1, · · · , xN) and D(n−1)−K(⃗a) = (y1, · · · , yN)

=⇒ D(x1, x2, · · · , xN) = (y1, y2, · · · , yN)
By induction hypothesis, we know that there are at least the K + 1
cyclic consecutive components of D(n−1)−K(⃗a) are taken from 0 or
M such that at least one of them is M
Since Ducci processes are cyclic, we may assume
y1, y2, · · · , yK, yK+1 are K + 1 cyclic consecutive components of
D(n−1)−K(⃗a) which are taken from 0 or M such that at least one
of them is M without loss of generality
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.. Proof for Lemma 2.10

.
(continued...)..

......

By Lemma 2.8, x1, x2, · · · , xK, xK+1, xK+2 ∈ {0,M} and at least
one of them is M

Hence, we conclude that x1, x2, · · · , xK, xK+1, xK+2 are
(K + 1) + 1 cyclic consecutive components of D(n−1)−(K+1)(⃗a)
which are taken from 0 or M such that at least one of them is M,
so i = K + 1 holds
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.. Proof for Remark 2.11

.Remark 2.11

.Proof...

......

The first statement follows from the fact that AN is a collection of
N-tuples of nonnegative integers
Now, we prove the last statement:

∵ i ≤ min{n − k − 1,N − 1}
∴ i ≤ n − k − 1
By (a), we have 0 ≤ i ≤ n − k − 1 and

k = (n − 1)− (n − k − 1) ≤ (n − 1)− i
≤ (n − 1)− 0

= n − 1
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.. Proof for Theorem 2.12

.Theorem 2.12

.Proof...

......

Therefore, D(n−1)−i(⃗a) is in the (n − k)-cycle

By Lemma 2.6, we obtain max Dj(⃗a) = max Dk(⃗a) = M for all
j = k, k + 1, · · · ,n − 1
In particular, Dn−1(⃗a) = M
By Lemma 2.10, we know that there are at least N cyclic
consecutive components of D(n−1)−(N−1)(⃗a) taken from 0 or M
=⇒ the components of Dn−N(⃗a) are all equal to either 0 or M
which follows from Dn−N(⃗a) ∈ AN
Now, look at the Ducci sequence of Dn−N(⃗a):
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.. Proof for Theorem 2.12

.
(continued...)..

......

Dn−N(⃗a),Dn−N+1(⃗a), · · ·,Dn−1(⃗a),Dn(⃗a) = Dk(⃗a),
Dk+1(⃗a),Dk+2(⃗a), · · · ,Dn−N−1(⃗a), · · ·

=⇒ the components of Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) are all
equal to either 0 or M, since the components of Dn−N(⃗a) are all
equal to 0 or M
Hence, we complete this proof
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(continued...)..
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Hence, we complete this proof
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.. Proof for Remark 2.13

.Remark 2.13

.Proof...

......

Let M > 1 be an integer

and a⃗ = (M, 0, 1, · · · , 1, 1) ∈ AN
Choose b⃗ = D(⃗a) ∈ AN
=⇒ b⃗ = (M, 1, 0, · · · , 0,M − 1)
Note that max a⃗ = max b⃗ = M
∴ the components of a⃗, b⃗ aren’t all equal to either 0 or M
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.. Proof for Lemma 2.15

.Lemma 2.15

.Proof...

......

Let gcd a⃗ = d
Write a⃗ = d⃗b with gcd b⃗ = 1

Note that d > 0 and D(⃗a) = D(d⃗b) = dD(⃗b)
=⇒ Dn(⃗a) = Dn(d⃗b) = dDn(⃗b) by induction on n
=⇒ d | Dn(⃗a)
Therefore, we know that gcd a⃗ | Dn(⃗a)
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=⇒ Dn(⃗a) = Dn(d⃗b) = dDn(⃗b) by induction on n

=⇒ d | Dn(⃗a)
Therefore, we know that gcd a⃗ | Dn(⃗a)
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.Corollary 2.16

.Proof...

......It follows from Theorem 2.12 and Lemma 2.15

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.18

.Lemma 2.18

.Proof...

......

It suffices to show that gcd Dr(⃗a) | gcd Ds(⃗a)

Given nonnegative integers r, s with r ≤ s
If r = s, there is nothing to prove
Now, we may assume that r < s
It is reduced to prove that gcd Dr(⃗a) | gcd Dr+1(⃗a):
Write Dr(⃗a) = (x1d, x2d, · · · , xNd) such that
gcd(x1, x2, · · · , xN) = 1, where gcd Dr(⃗a) = d
=⇒ d > 0, since Dr(⃗a) ∈ AN
=⇒ Dr+1(⃗a) = ( |x1 − x2|d, · · · , |xN−1 − xN|d, |xN − x1|d )
Let gcd( |x1 − x2|, · · · , |xN−1 − xN|, |xN − x1| ) = d∗
=⇒ gcd Dr+1(⃗a) = d∗ · d = d∗ · gcd Dr(⃗a)
∴ gcd Dr(⃗a) | gcd Dr+1(⃗a)
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.Lemma 2.19

.Proof...

......

Given k ≤ r, s ≤ n − 1
We may assume that r ≤ s

If r = s, then it is trivial
Suppose r < s, then gcd Dr(⃗a) ≤ gcd Ds(⃗a) by Lemma 2.18
Now, look at the Ducci sequence of Ds(⃗a):

Ds(⃗a),Ds+1(⃗a), · · · ,Dn−1(⃗a),
Dn(⃗a) = Dk(⃗a),Dk+1(⃗a), · · · ,Dr(⃗a)

By Lemma 2.18, we know that
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.. Proof for Lemma 2.19

.
(continued...)..

......

gcd Ds(⃗a) ≤ gcd Dk(⃗a) = gcd Dn(⃗a) ≤ gcd Dk+1(⃗a) ≤ gcd Dr(⃗a)

Therefore, gcd Ds(⃗a) ≤ gcd Dr(⃗a)
So, we conclude that gcd Dr(⃗a) = gcd Ds(⃗a)

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 2.19

.
(continued...)..

......

gcd Ds(⃗a) ≤ gcd Dk(⃗a) = gcd Dn(⃗a) ≤ gcd Dk+1(⃗a) ≤ gcd Dr(⃗a)

Therefore, gcd Ds(⃗a) ≤ gcd Dr(⃗a)
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.. Proof for Lemma 2.19

.
(continued...)..

......

gcd Ds(⃗a) ≤ gcd Dk(⃗a) = gcd Dn(⃗a) ≤ gcd Dk+1(⃗a) ≤ gcd Dr(⃗a)

Therefore, gcd Ds(⃗a) ≤ gcd Dr(⃗a)
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.. Proof for Theorem 3.2

.Theorem 3.2

.Proof...

......

By Lemma 2.1, we may assume that the period of a⃗ is n − k and

Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a)

is the (n − k)-cycle of a⃗

Let Dk(⃗a) = (x1, x2, · · · , xN)
By Theorem 2.12, x1, x2, · · · , xN ∈ {0,M}, where M = max Dk(⃗a)
Since Dk(⃗a) ∈ AN, we know that M is a nonnegative integer
=⇒ We have the following two cases:
Case 1: M = 0
Case 2: M > 0
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.. Proof for Theorem 3.2
.
(continued...)..

......

Case 1: M = 0

=⇒ Dk(⃗a) = (0, 0, · · · , 0) ∈ (Z2)
N

=⇒
Dk+1(⃗a) = D(Dk(⃗a)) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = Dk(⃗a)
=⇒ n − 1 ≤ k, since a⃗,D(⃗a), · · · ,Dk(⃗a), · · · ,Dn−1(⃗a) are all
distinct
∵ the period of a⃗ is n − k
∴ k ≤ n − 1
Therefore, we have n − 1 = k
So, the period of a⃗ is n − k = 1
Choose b⃗ = 0⃗ ∈ (Z2)

N

=⇒ D(⃗b) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = b⃗ = D0(⃗b)
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=⇒ the period of b⃗ is (1− 0) = 1 and the 1-cycle of b⃗ is
D0(⃗b) = 0⃗

Therefore, the period of a⃗ is equal to the period of b⃗
Note that Dk+1(⃗a) = 0⃗ = D0(⃗b)
=⇒ the cycle of a⃗ is similar to the cycle of b⃗
Hence, we are done
Case 2: M > 0
=⇒ M ∈ N
Write Dk(⃗a) = (x1, x2, · · · , xN) = M(y1, y2, · · · , yN), where
y1, y2, · · · , yN are taken from 0 or 1
Choose b⃗ = (y1, y2, · · · , yN) ∈ (Z2)

N

=⇒ Dk(⃗a) = Mb⃗
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=⇒ Dk+1(⃗a) = D(Dk(⃗a)) = D(Mb⃗) = MD(⃗b)

=⇒ Dk+i(⃗a) = MDi(⃗b), ∀ i = 1, 2, · · · ,n − k
In particular, Mb⃗ = Dk(⃗a) = Dn(⃗a) = MDn−k(⃗b)
=⇒ D0(⃗b) = b⃗ = Dn−k(⃗b)
By assumption,
Dk(⃗a) = Mb⃗,Dk+1(⃗a) = MD(⃗b), · · · ,Dn−1(⃗a) = Dn−k−1(⃗b) are all
distinct
=⇒ D0(⃗b) = b⃗,D(⃗b), · · · ,Dn−k−1(⃗b) are all distinct
Therefore, the period of b⃗ is (n − k)− 0 = n − k and the
(n − k)-cycle of b⃗ is D0(⃗b) = b⃗,D(⃗b), · · · ,Dn−k−1(⃗b)
So, the period of a⃗ is equal to the period of b⃗
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Dk(⃗a) = Mb⃗,Dk+1(⃗a) = MD(⃗b), · · · ,Dn−1(⃗a) = Dn−k−1(⃗b) are all
distinct
=⇒ D0(⃗b) = b⃗,D(⃗b), · · · ,Dn−k−1(⃗b) are all distinct

Therefore, the period of b⃗ is (n − k)− 0 = n − k and the
(n − k)-cycle of b⃗ is D0(⃗b) = b⃗,D(⃗b), · · · ,Dn−k−1(⃗b)
So, the period of a⃗ is equal to the period of b⃗
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So, the period of a⃗ is equal to the period of b⃗
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So, the period of a⃗ is equal to the period of b⃗
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∵ Dk(⃗a) = Mb⃗ = MD0(⃗b)

∴ the cycle of a⃗ is similar to the cycle of b⃗
Hence, we complete this proof
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∵ Dk(⃗a) = Mb⃗ = MD0(⃗b)
∴ the cycle of a⃗ is similar to the cycle of b⃗
Hence, we complete this proof
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.Lemma 3.4

.Proof...

......

Note that D(a⃗c) = (|a1 − a2|, |a2 − a3|, · · · , |aN − a1|) = D(⃗a)

Since the cycle of a⃗ is similar to the cycle of b⃗, ∃m ∈ N such that

Dr(⃗a) = mDs(⃗b),

where r, s are nonnegative integers with k ≤ s ≤ n − 1
Then, we have:

Dr+1(a⃗c) = Dr(D(a⃗c))

= Dr(D(⃗a))
= Dr+1(⃗a)
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Since the cycle of a⃗ is similar to the cycle of b⃗, ∃m ∈ N such that

Dr(⃗a) = mDs(⃗b),
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= Dr(D(⃗a))
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.Proof...
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Since the cycle of a⃗ is similar to the cycle of b⃗, ∃m ∈ N such that
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where r, s are nonnegative integers with k ≤ s ≤ n − 1
Then, we have:
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= Dr(D(⃗a))
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= D(Dr(⃗a))
= D(mDs(⃗b))
= mD(Ds(⃗b))
= mDs+1(⃗b)

=⇒ Dr+1(a⃗c) = mDs+1(⃗b) which completes this proof
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.Remark 3.5

.Proof...

......

If k ≤ s < n − 1, then it is trivial
Now, we may assume that s = n − 1:

=⇒ s + 1 = n
=⇒ Ds+1(⃗b) = Dn(⃗b) = Dk(⃗b) is in the cycle of b⃗

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix
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.Remark 3.5
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......

If k ≤ s < n − 1, then it is trivial
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.. Proof for Remark 3.5

.Remark 3.5

.Proof...
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.Lemma 3.6

.Proof...

......

Note that D(a⃗c) = (|a1 − a2|, |a2 − a3|, · · · , |aN − a1|) = D(⃗a)

“⇒” Suppose the condition holds
=⇒ ∃ k ≤ r ≤ n − 1 such that a⃗c = Dr(⃗a)
=⇒ D(⃗a) = D(a⃗c) = D(Dr(⃗a)) = Dr+1(⃗a)
=⇒ n − 1 ≤ r, since D0(⃗a) = a⃗,D(⃗a), · · · ,
Dk(⃗a), · · · ,Dr(⃗a), · · · ,Dn−1(⃗a) are all distinct
Therefore, r = n − 1
=⇒ n = r + 1
Then, we have:
Dk(⃗a) = Dn(⃗a) = Dr+1(⃗a) = D(a⃗c) = D(⃗a) (∗)
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Dk(⃗a), · · · ,Dr(⃗a), · · · ,Dn−1(⃗a) are all distinct
Therefore, r = n − 1
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Then, we have:
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.
(continued...)..

......

“⇒” Claim: k = 0
.Proof...

......

If not, suppose k ≥ 1

By assumption, D0(⃗a) = a⃗,D(⃗a), · · · ,Dk−1(⃗a),
Dk(⃗a), · · · ,Dn−1(⃗a) are all distinct
=⇒ n − 1 ≤ k − 1, by (∗)
=⇒ n ≤ k which is a contradiction to n > k

By Claim and (∗), we obtain a⃗ = D0(⃗a) = D(a⃗c)
=⇒ ∀ 1 ≤ i ≤ N, ai = M − ai

=⇒ ∀ 1 ≤ i ≤ N, ai =
M
2
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(continued...)..
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“⇒” =⇒ M = max a⃗ =
M
2

=⇒ M = 0
∵ 0 ≤ a1, a2, · · · , aN ≤ M = 0
∴ a1 = a2 = · · · = aN = 0
=⇒ a⃗ = 0⃗

“⇐” Suppose a⃗ = 0⃗
=⇒ a1 = a2 = · · · = aN = 0
=⇒ M = 0
=⇒ a⃗c = (0, 0, · · · , 0)
Note that
D(⃗a) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = a⃗ = D0(⃗a)
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=⇒ M = 0
∵ 0 ≤ a1, a2, · · · , aN ≤ M = 0

∴ a1 = a2 = · · · = aN = 0
=⇒ a⃗ = 0⃗

“⇐” Suppose a⃗ = 0⃗
=⇒ a1 = a2 = · · · = aN = 0
=⇒ M = 0
=⇒ a⃗c = (0, 0, · · · , 0)
Note that
D(⃗a) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = a⃗ = D0(⃗a)
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.
(continued...)..
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“⇐” =⇒ the period of a⃗ is (1− 0) = 1

and the 1-cycle
of a⃗ is

D0(⃗a) = (0, 0, · · · , 0) = a⃗c

Hence, we complete this proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 3.6

.
(continued...)..

......

“⇐” =⇒ the period of a⃗ is (1− 0) = 1 and the 1-cycle
of a⃗ is

D0(⃗a) = (0, 0, · · · , 0) = a⃗c

Hence, we complete this proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 3.7

.Lemma 3.7

.Proof...

......

Write x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ AN

(a)

T(c⃗x + y⃗) = T(cx1 + y1, cx2 + y2, · · · , cxN + yN)

= (cx2 + y2, · · · , cxN + yN, cx1 + y1)
= c(x2, · · · , xN, x1) + (y2, · · · , yN, y1)
= cT(⃗x) + T(⃗y)

(b)
Given (a1, a2, · · · , aN) ∈ AN
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(b)
Given (a1, a2, · · · , aN) ∈ AN
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.Proof...
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Write x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ AN

(a)

T(c⃗x + y⃗) = T(cx1 + y1, cx2 + y2, · · · , cxN + yN)

= (cx2 + y2, · · · , cxN + yN, cx1 + y1)
= c(x2, · · · , xN, x1) + (y2, · · · , yN, y1)
= cT(⃗x) + T(⃗y)

(b)
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.. Proof for Lemma 3.7
.
(continued...)..

......

(b) Note that

D ◦ T(a1, a2, · · · , aN) = D(T(a1, a2, · · · , aN))

= D(a2, · · · , aN, a1)
= (|a2 − a3|, · · · , |aN − a1|,

|a1 − a2|)

and

T ◦ D(a1, a2, · · · , aN) = T(D(a1, a2, · · · , aN))

= T(|a1 − a2|, · · · , |aN−1−
aN|, |aN − a1|)
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.. Proof for Lemma 3.7

.
(continued...)..

......

(b)

= (|a2 − a3|, · · · , |aN − a1|, |a1 − a2|)

=⇒ D ◦ T(a1, a2, · · · , aN) = T ◦ D(a1, a2, · · · , aN)
∴ D ◦ T = T ◦ D
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.. Proof for Lemma 3.7

.
(continued...)..

......

(b)

= (|a2 − a3|, · · · , |aN − a1|, |a1 − a2|)

=⇒ D ◦ T(a1, a2, · · · , aN) = T ◦ D(a1, a2, · · · , aN)

∴ D ◦ T = T ◦ D
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.. Proof for Lemma 3.7

.
(continued...)..
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(b)

= (|a2 − a3|, · · · , |aN − a1|, |a1 − a2|)

=⇒ D ◦ T(a1, a2, · · · , aN) = T ◦ D(a1, a2, · · · , aN)
∴ D ◦ T = T ◦ D
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.. Proof for Remark 3.8

.Remark 3.8

.Proof...

......

Given x, y ∈ Z2

=⇒ 2y = 0
=⇒ x − y = x − y + 2y = x + y
=⇒ |x − y| = |x + y|
=⇒ |x − y| = x + y, since x, y ∈ Z2
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.. Proof for Remark 3.9

.Remark 3.9

.Proof...

......

“⇒” It is trivial
“⇐” Suppose the condition holds

Given x⃗, y⃗ ∈ (Z2)
N, and c ∈ Z2

We must show that L (c⃗x + y⃗) = cL (⃗x) + L (⃗y):
If c = 1, then there is nothing to prove
Now, we may assume that c = 0:
=⇒ L (c⃗x + y⃗) = L (0⃗+ y⃗) = L (⃗y) and
cL (⃗x) + L (⃗y) = 0⃗+ L (⃗y) = L (⃗y)
∴ L (c⃗x + y⃗) = cL (⃗x) + L (⃗y)
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.. Proof for Lemma 3.10

.Lemma 3.10

.Proof...

......

We prove it by induction on i:
i = 0:

T 0 = I is a linear transformation, holds
Suppose i = K holds
Then, i = K + 1:
By Remark 3.9, it suffices to show that:

T K+1(⃗x + y⃗) = T K+1(⃗x) + T K+1(⃗y), ∀ x⃗, y⃗ ∈ (Z2)
N

Given x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ (Z2)
N
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.. Proof for Lemma 3.10
..
.
(continued...)..

......

T K+1(⃗x + y⃗) = T K(T(⃗x + y⃗))
= T K(T (x1 + y1, x2 + y2, · · · , xN + yN))

= T K(x2 + y2, · · · , xN + yN, x1 + y1)
= T K(x2, · · · , xN, x1) + T K(y2, · · · , yN), by

induction hypothesis
= T K(T (x1, x2, · · · , xN)) + T K(T (y1, y2, · · · , yN))

= T K+1(x1, x2, · · · , xN) + T K+1(y1, y2, · · · , yN)

= T K+1(⃗x) + T K+1(⃗y)

By induction, we complete this proof
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.. Proof for Lemma 3.11

.Lemma 3.11

.Proof...

......

We prove it by induction on i:
i = 0:

D0 = I is a linear transformation, holds
Suppose i = K holds
Then, i = K + 1:
By Remark 3.9, it suffices to show that:

DK+1(⃗x + y⃗) = DK+1(⃗x) + DK+1(⃗y), ∀ x⃗, y⃗ ∈ (Z2)
N

Given x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ (Z2)
N
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.Lemma 3.11

.Proof...

......

We prove it by induction on i:
i = 0:
D0 = I is a linear transformation, holds

Suppose i = K holds
Then, i = K + 1:
By Remark 3.9, it suffices to show that:

DK+1(⃗x + y⃗) = DK+1(⃗x) + DK+1(⃗y), ∀ x⃗, y⃗ ∈ (Z2)
N

Given x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ (Z2)
N
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.Lemma 3.11

.Proof...

......

We prove it by induction on i:
i = 0:
D0 = I is a linear transformation, holds
Suppose i = K holds
Then, i = K + 1:

By Remark 3.9, it suffices to show that:

DK+1(⃗x + y⃗) = DK+1(⃗x) + DK+1(⃗y), ∀ x⃗, y⃗ ∈ (Z2)
N

Given x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ (Z2)
N
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.. Proof for Lemma 3.11

.Lemma 3.11

.Proof...

......

We prove it by induction on i:
i = 0:
D0 = I is a linear transformation, holds
Suppose i = K holds
Then, i = K + 1:
By Remark 3.9, it suffices to show that:

DK+1(⃗x + y⃗) = DK+1(⃗x) + DK+1(⃗y), ∀ x⃗, y⃗ ∈ (Z2)
N

Given x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ (Z2)
N
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.. Proof for Lemma 3.11

.Lemma 3.11

.Proof...

......

We prove it by induction on i:
i = 0:
D0 = I is a linear transformation, holds
Suppose i = K holds
Then, i = K + 1:
By Remark 3.9, it suffices to show that:

DK+1(⃗x + y⃗) = DK+1(⃗x) + DK+1(⃗y), ∀ x⃗, y⃗ ∈ (Z2)
N

Given x⃗ = (x1, x2, · · · , xN), y⃗ = (y1, y2, · · · , yN) ∈ (Z2)
N
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.. Proof for Lemma 3.11
..
.
(continued...)..

......

DK+1(⃗x + y⃗) = DK(D (⃗x + y⃗))
= DK(D(x1 + y1, x2 + y2, · · · , xN + yN))

= DK( |(x1 + y1)− (x2 + y2)|, · · · , |(xN−1 + yN−1)

− (xN + yN)|, |(xN + yN)− (x1 + y1)| )
= DK( (x1 + y1) + (x2 + y2), · · · , (xN−1 + yN−1)

+ (xN + yN), (xN + yN) + (x1 + y1) ), by Remark 3.8
= DK((x1 + x2) + (y1 + y2), · · · , (xN−1 + xN)

+ (yN−1 + yN), (xN + x1) + (yN + y1))
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.. Proof for Lemma 3.11

.
(continued...)..

......

= DK(x1 + x2, · · · , xN−1 + xN, xN + x1) + DK(y1 + y2, · · · ,
yN−1 + yN, yN + y1), by induction hypothesis

= DK( |x1 − x2|, · · · , |xN−1 − xN|, |xN − x1| )+
DK( |y1 − y2|, · · · , |yN−1 − yN|, |yN − y1|), by Remark 3.8

= DK(D(x1, x2, · · · , xN)) + DK(D(y1, y2, · · · , yN))

= DK+1(x1, x2, · · · , xN) + DK+1D(y1, y2, · · · , yN)

= DK+1(⃗x) + DK+1(⃗y)

By induction, we complete this proof
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.. Proof for Lemma 3.12
..

.Lemma 3.12

.Proof...

......

We prove it by induction on i:

i = 0: It is trivial
Suppose i = K holds
Then, i = K + 1:

D(r−s)(K+1)(Dt(⃗a)) = Dr−s(D(r−s)K(Dt(⃗a)))
= Dr−s(Dt(⃗a)), by induction hypothesis
= Dr−s+t(⃗a)
= Dt−s(Dr(⃗a)), since s ≤ t
= Dt−s(Ds(⃗a))
= Dt(⃗a), holds

By induction, we complete this proof
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.. Proof for Lemma 3.12
..

.Lemma 3.12

.Proof...

......

We prove it by induction on i:
i = 0: It is trivial

Suppose i = K holds
Then, i = K + 1:

D(r−s)(K+1)(Dt(⃗a)) = Dr−s(D(r−s)K(Dt(⃗a)))
= Dr−s(Dt(⃗a)), by induction hypothesis
= Dr−s+t(⃗a)
= Dt−s(Dr(⃗a)), since s ≤ t
= Dt−s(Ds(⃗a))
= Dt(⃗a), holds

By induction, we complete this proof
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.. Proof for Lemma 3.12
..

.Lemma 3.12

.Proof...

......

We prove it by induction on i:
i = 0: It is trivial
Suppose i = K holds
Then, i = K + 1:

D(r−s)(K+1)(Dt(⃗a)) = Dr−s(D(r−s)K(Dt(⃗a)))
= Dr−s(Dt(⃗a)), by induction hypothesis
= Dr−s+t(⃗a)
= Dt−s(Dr(⃗a)), since s ≤ t
= Dt−s(Ds(⃗a))
= Dt(⃗a), holds

By induction, we complete this proof
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.. Proof for Lemma 3.12
..

.Lemma 3.12

.Proof...

......

We prove it by induction on i:
i = 0: It is trivial
Suppose i = K holds
Then, i = K + 1:

D(r−s)(K+1)(Dt(⃗a)) = Dr−s(D(r−s)K(Dt(⃗a)))
= Dr−s(Dt(⃗a)), by induction hypothesis
= Dr−s+t(⃗a)
= Dt−s(Dr(⃗a)), since s ≤ t
= Dt−s(Ds(⃗a))
= Dt(⃗a), holds

By induction, we complete this proof
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.Theorem 3.13

.Proof...

......

Note that {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)
N over Z2

(a) Claim: Dr(⃗ei) = Ds(⃗ei) for each i = 1, 2, · · · ,N
.Proof...

......

Given i ∈ N with 1 ≤ i ≤ N
If i = 1, then there is nothing to prove
Now, we may assume that 2 ≤ i ≤ N
Note that e⃗i = TN−i+1(⃗e1)
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.Theorem 3.13

.Proof...

......

Note that {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)
N over Z2

(a) Claim: Dr(⃗ei) = Ds(⃗ei) for each i = 1, 2, · · · ,N
.Proof...

......

Given i ∈ N with 1 ≤ i ≤ N

If i = 1, then there is nothing to prove
Now, we may assume that 2 ≤ i ≤ N
Note that e⃗i = TN−i+1(⃗e1)
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.Theorem 3.13

.Proof...

......

Note that {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)
N over Z2

(a) Claim: Dr(⃗ei) = Ds(⃗ei) for each i = 1, 2, · · · ,N
.Proof...

......

Given i ∈ N with 1 ≤ i ≤ N
If i = 1, then there is nothing to prove
Now, we may assume that 2 ≤ i ≤ N

Note that e⃗i = TN−i+1(⃗e1)
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.Theorem 3.13

.Proof...

......

Note that {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)
N over Z2

(a) Claim: Dr(⃗ei) = Ds(⃗ei) for each i = 1, 2, · · · ,N
.Proof...

......

Given i ∈ N with 1 ≤ i ≤ N
If i = 1, then there is nothing to prove
Now, we may assume that 2 ≤ i ≤ N
Note that e⃗i = TN−i+1(⃗e1)
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.. Proof for Theorem 3.13
..
.
(continued...)..

......

(a) Claim: Dr(⃗ei) = Ds(⃗ei) for each i = 1, 2, · · · ,N
.
(continued...)..

......

Dr(⃗ei) = Dr(TN−i+1(⃗e1))
= TN−i+1(Dr(⃗e1)), by Lemma 3.7(b)
= TN−i+1(Ds(⃗e1))
= Ds(TN−i+1(⃗e1)), by Lemma 3.7(b)
= Ds(⃗ei)

∴ Dr(⃗ei) = Ds(⃗ei) for each i = 1, 2, · · · ,N
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.. Proof for Theorem 3.13
..
.
(continued...)..

......

(a) Given b⃗ ∈ (Z2)
N

Finally, we must show that Dr(⃗b) = Ds(⃗b):

∵ {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)
N over Z2

∴ ∃ c1, c2, · · · , cN ∈ Z2 such that

b⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N

Then, we have:

Dr(⃗b) = Dr(⃗b)
= Dr(c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N)

= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN),

by Lemma 3.11
= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN)
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..
.
(continued...)..

......

(a) Given b⃗ ∈ (Z2)
N

Finally, we must show that Dr(⃗b) = Ds(⃗b):
∵ {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)

N over Z2

∴ ∃ c1, c2, · · · , cN ∈ Z2 such that

b⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N

Then, we have:

Dr(⃗b) = Dr(⃗b)
= Dr(c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N)

= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN),

by Lemma 3.11
= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN)
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..
.
(continued...)..

......

(a) Given b⃗ ∈ (Z2)
N

Finally, we must show that Dr(⃗b) = Ds(⃗b):
∵ {⃗e1, e⃗2, · · · , e⃗N} is a basis of (Z2)

N over Z2

∴ ∃ c1, c2, · · · , cN ∈ Z2 such that

b⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N

Then, we have:

Dr(⃗b) = Dr(⃗b)
= Dr(c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N)

= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN),

by Lemma 3.11
= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN)
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.. Proof for Theorem 3.13

.
(continued...)..

......

(a)

= c1Dr(⃗e1) + c2Dr(⃗e2) + · · ·+ cNDr(⃗eN)

= c1Ds(⃗e1) + c2Ds(⃗e2) + · · ·+ cNDs(⃗eN),

by Claim
= c1Ds(⃗e1) + c2Ds(⃗e2) + · · ·+ cNDs(⃗eN)

= Ds(c1e⃗1 + c2e⃗2 + · · ·+ cNe⃗N), by Lemma 3.11
= Ds(⃗b)
= Ds(⃗b)
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.. Proof for Theorem 3.13

.
(continued...)..

......

(b) Given i ∈ N with 2 ≤ i ≤ N
It suffices to show that the period of e⃗i is equal to
the period of e⃗1:

By Lemma 2.1, we may assume that the period of
e⃗1 = n − k
=⇒ D0(⃗e1) = e⃗1,D(⃗e1),D2(⃗e1), · · · ,Dn−1(⃗e1) are
all distinct and Dn(⃗e1) = Dk(⃗e1)
By (a), we know that Dn(⃗ei) = Dk(⃗ei) (∗)
Claim: D0(⃗ei) = e⃗i,D(⃗ei),D2(⃗ei), · · · ,DN−1(⃗ei) are
all distinct
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.
(continued...)..
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(b) Given i ∈ N with 2 ≤ i ≤ N
It suffices to show that the period of e⃗i is equal to
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By Lemma 2.1, we may assume that the period of
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Claim: D0(⃗ei) = e⃗i,D(⃗ei),D2(⃗ei), · · · ,DN−1(⃗ei) are
all distinct
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.
(continued...)..
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(b) Given i ∈ N with 2 ≤ i ≤ N
It suffices to show that the period of e⃗i is equal to
the period of e⃗1:
By Lemma 2.1, we may assume that the period of
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=⇒ D0(⃗e1) = e⃗1,D(⃗e1),D2(⃗e1), · · · ,Dn−1(⃗e1) are
all distinct

and Dn(⃗e1) = Dk(⃗e1)
By (a), we know that Dn(⃗ei) = Dk(⃗ei) (∗)
Claim: D0(⃗ei) = e⃗i,D(⃗ei),D2(⃗ei), · · · ,DN−1(⃗ei) are
all distinct
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.
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(b) Given i ∈ N with 2 ≤ i ≤ N
It suffices to show that the period of e⃗i is equal to
the period of e⃗1:
By Lemma 2.1, we may assume that the period of
e⃗1 = n − k
=⇒ D0(⃗e1) = e⃗1,D(⃗e1),D2(⃗e1), · · · ,Dn−1(⃗e1) are
all distinct and Dn(⃗e1) = Dk(⃗e1)

By (a), we know that Dn(⃗ei) = Dk(⃗ei) (∗)
Claim: D0(⃗ei) = e⃗i,D(⃗ei),D2(⃗ei), · · · ,DN−1(⃗ei) are
all distinct
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.
(continued...)..

......

(b) Given i ∈ N with 2 ≤ i ≤ N
It suffices to show that the period of e⃗i is equal to
the period of e⃗1:
By Lemma 2.1, we may assume that the period of
e⃗1 = n − k
=⇒ D0(⃗e1) = e⃗1,D(⃗e1),D2(⃗e1), · · · ,Dn−1(⃗e1) are
all distinct and Dn(⃗e1) = Dk(⃗e1)
By (a), we know that Dn(⃗ei) = Dk(⃗ei) (∗)
Claim: D0(⃗ei) = e⃗i,D(⃗ei),D2(⃗ei), · · · ,DN−1(⃗ei) are
all distinct
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.. Proof for Theorem 3.13
..
.
(continued...)..

......

(b) Claim: e⃗i,D(⃗ei),D2(⃗ei), · · · ,DN−1(⃗ei) are all distinct
.Proof...

......

If not, suppose ∃ a, b ∈ Z with 0 ≤ a < b ≤ n − 1 such that
Da(⃗ei) = Db(⃗ei)
=⇒ Ti−1(Da(⃗ei)) = Ti−1(Db(⃗ei))
=⇒ Da(Ti−1(⃗ei)) = Db(Ti−1(⃗ei)), by Lemma 3.7(b)
=⇒ Da(⃗e1) = Db(⃗e1) which is a contradiction to

D0(⃗e1) = e⃗1,D(⃗e1),D2(⃗e1), · · · ,Dn−1(⃗e1)

are all distinct
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.. Proof for Theorem 3.13
.
(continued...)..

......

(b) By Claim and (∗), the period of e⃗i is equal to n − k

=⇒ the period of e⃗i is equal to the period of e⃗1
(c) It is enough to prove that the period of a⃗ divides the

period of e⃗1
By Lemma 2.1, we may assume that the periods of a⃗
and e⃗1 are n − k and n′ − k′, respectively
Write n′ − k′ = (n − k)q + r, where q, r are
nonnegative integers with

0 ≤ r < n − k

So, it suffices to show that r = 0:
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=⇒ the period of e⃗i is equal to the period of e⃗1

(c) It is enough to prove that the period of a⃗ divides the
period of e⃗1
By Lemma 2.1, we may assume that the periods of a⃗
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nonnegative integers with

0 ≤ r < n − k

So, it suffices to show that r = 0:
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period of e⃗1
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(b) By Claim and (∗), the period of e⃗i is equal to n − k
=⇒ the period of e⃗i is equal to the period of e⃗1

(c) It is enough to prove that the period of a⃗ divides the
period of e⃗1
By Lemma 2.1, we may assume that the periods of a⃗
and e⃗1 are n − k and n′ − k′, respectively
Write n′ − k′ = (n − k)q + r, where q, r are
nonnegative integers with

0 ≤ r < n − k
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(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗

such that the cycle of a⃗ is
similar to the cycle of b⃗
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王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗

=⇒ Dn(⃗b) = Dk(⃗b)
Moreover, the period of e⃗1 is n′ − k′
=⇒ Dn′

(⃗e1) = Dk′ (⃗e1)
By (a), we obtain Dn′

(⃗b) = Dk′ (⃗b)
Take b⃗ = Dk+k′ (⃗b)
By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗
=⇒ Dn(⃗b) = Dk(⃗b)

Moreover, the period of e⃗1 is n′ − k′
=⇒ Dn′

(⃗e1) = Dk′ (⃗e1)
By (a), we obtain Dn′

(⃗b) = Dk′ (⃗b)
Take b⃗ = Dk+k′ (⃗b)
By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗
=⇒ Dn(⃗b) = Dk(⃗b)
Moreover, the period of e⃗1 is n′ − k′

=⇒ Dn′
(⃗e1) = Dk′ (⃗e1)

By (a), we obtain Dn′
(⃗b) = Dk′ (⃗b)

Take b⃗ = Dk+k′ (⃗b)
By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗
=⇒ Dn(⃗b) = Dk(⃗b)
Moreover, the period of e⃗1 is n′ − k′
=⇒ Dn′

(⃗e1) = Dk′ (⃗e1)

By (a), we obtain Dn′
(⃗b) = Dk′ (⃗b)

Take b⃗ = Dk+k′ (⃗b)
By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗
=⇒ Dn(⃗b) = Dk(⃗b)
Moreover, the period of e⃗1 is n′ − k′
=⇒ Dn′

(⃗e1) = Dk′ (⃗e1)
By (a), we obtain Dn′

(⃗b) = Dk′ (⃗b)

Take b⃗ = Dk+k′ (⃗b)
By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗
=⇒ Dn(⃗b) = Dk(⃗b)
Moreover, the period of e⃗1 is n′ − k′
=⇒ Dn′

(⃗e1) = Dk′ (⃗e1)
By (a), we obtain Dn′

(⃗b) = Dk′ (⃗b)
Take b⃗ = Dk+k′ (⃗b)

By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13
..
.
(continued...)..

......

(c) By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which

is equal to the period of a⃗ such that the cycle of a⃗ is
similar to the cycle of b⃗
=⇒ Dn(⃗b) = Dk(⃗b)
Moreover, the period of e⃗1 is n′ − k′
=⇒ Dn′

(⃗e1) = Dk′ (⃗e1)
By (a), we obtain Dn′

(⃗b) = Dk′ (⃗b)
Take b⃗ = Dk+k′ (⃗b)
By Lemma 3.12, we obtain Dn′−k′ (⃗b) = b⃗
=⇒

b⃗ = Dn′−k′ (⃗b) = D(n−k)q+r(⃗b) = Dr(D(n−k)q(⃗b))
= Dr(⃗b), by Lemma 3.12

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.13

.
(continued...)..

......

(c) =⇒ Dk+k′ (⃗b) = Dk+k′+r(⃗b)

Write k′ = (n − k)q0 + r0, where q0, r0 are
nonnegative integers with 0 ≤ r0 < n − k
=⇒

Dk+k′ (⃗b) = D(k+(n−k)q0+r0)(⃗b)
= D(n−k)q0(Dk+r0 (⃗b))
= Dk+r0 (⃗b), by Lemma 3.12

and
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(c)

Dk+k′+r(⃗b) = Dk+((n−k)q0+r0)+r(⃗b)
= D(n−k)q0(Dk+r0+r(⃗b))
= Dk+r0+r(⃗b), by Lemma 3.12

Then, we have:

Dk+r0+r(⃗b) = Dk+k′+r(⃗b)
= Dk+k′ (⃗b)
= Dk+r0 (⃗b) (∗′)
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(c) Note that k+ r0 ≤ k+ r0 + r < k+ r0 + (n− k) = n+ r0

=⇒ k + r0 ≤ k + r0 + r ≤ (n − 1) + r0, since
k + r0 + r,n + r0 are integers
On the other hand, b⃗,D(⃗b), · · · ,Dk(⃗b),
Dk+1(⃗b), · · · ,Dn−1(⃗b) are all distinct and
Dn(⃗b) = Dk(⃗b), since the period of b⃗ is n − k
Then, we have:
Dk+r0 (⃗b),Dk+r0+1(⃗b), · · · ,Dk+r0+r(⃗b), · · · ,D(n−1)+r0 (⃗b)
are all distinct
By (∗′), we conclude that k + r0 = k + r0 + r
=⇒ r = 0
Hence, we complete this proof
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..

.Lemma 3.14

.Proof...

......

(a) Given x⃗ = (x1, x2, · · · , xN) ∈ (Z2)
N

I + T (⃗x) = I (⃗x) + T (⃗x)
= I (x1, x2, · · · , xN) + T (x1, x2, · · · , xN)

= (x1, x2, · · · , xN) + (x2, · · · , xN, x1)
= (x1 + x2, · · · , xN−1 + xN, xN + x1)
= ( |x1 − x2|, · · · , |xN−1 − xN|, |xN − x1| ),

by Remark 3.8
= D(x1, x2, · · · , xN)

= D (⃗x)

∴ D = I + T
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..
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(continued...)..

......

(b) By (a), D2r
= (I + T )2

r

Claim: (I + T )2
r
= I + I 2r

.Proof...

......

We prove it by induction on r:

r = 0: It is trivial
Suppose r = K holds
Then, r = K + 1:

(I + T )2
K+1

= ((I + T )2
K
)2

= (I + T 2K
)2, by induction hypothesis
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(b) Claim: (I + T )2
r
= I + I 2r

.
(continued...)..

......

= I 2 + I T 2K
+ T 2K

I + (T 2K
)2

= I + T 2K
+ T 2K

+ T 2K+1

= I + T 2K+1 , since T (Z2) ⊆ Z2

So, r = K + 1 holds

Note that T N = T
By assumption, we know that T 2r

= T s

∴ D2r
= (I + T )2

r
= I + T 2r

= I + T s

Hence, we complete this proof
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.. Proof for Lemma 3.14
..
.
(continued...)..

......

(b) Claim: (I + T )2
r
= I + I 2r

.
(continued...)..

......

= I 2 + I T 2K
+ T 2K

I + (T 2K
)2

= I + T 2K
+ T 2K

+ T 2K+1

= I + T 2K+1 , since T (Z2) ⊆ Z2

So, r = K + 1 holds

Note that T N = T
By assumption, we know that T 2r

= T s

∴ D2r
= (I + T )2

r
= I + T 2r

= I + T s

Hence, we complete this proof
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.. Proof for Lemma 3.14
..
.
(continued...)..

......

(b) Claim: (I + T )2
r
= I + I 2r

.
(continued...)..

......

= I 2 + I T 2K
+ T 2K

I + (T 2K
)2

= I + T 2K
+ T 2K

+ T 2K+1

= I + T 2K+1 , since T (Z2) ⊆ Z2

So, r = K + 1 holds

Note that T N = T
By assumption, we know that T 2r

= T s

∴ D2r
= (I + T )2

r
= I + T 2r

= I + T s

Hence, we complete this proof
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.. Proof for Theorem 3.15

.Theorem 3.15

.Proof...

......

By Lemma 2.1, we may assume that the period of a⃗ is n − k

Note that 2r ≡ 0 (mod N)
By Theorem 3.2, ∃ b⃗ ∈ (Z2)

N with the period of b⃗ which is equal to
the period of a⃗ such that the cycle of a⃗ is similar to the cycle of b⃗
=⇒ ∃m ∈ N such that Dr(⃗a) = mDs(⃗b), where r, s are
nonnegative integers with k ≤ s ≤ n − 1
∵

DN(⃗b) = DN(⃗b), since b⃗ ∈ (Z2)
N

= I + T 0(⃗b), by Lemma 3.14
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.. Proof for Theorem 3.15

.Theorem 3.15

.Proof...

......

By Lemma 2.1, we may assume that the period of a⃗ is n − k
Note that 2r ≡ 0 (mod N)

By Theorem 3.2, ∃ b⃗ ∈ (Z2)
N with the period of b⃗ which is equal to

the period of a⃗ such that the cycle of a⃗ is similar to the cycle of b⃗
=⇒ ∃m ∈ N such that Dr(⃗a) = mDs(⃗b), where r, s are
nonnegative integers with k ≤ s ≤ n − 1
∵

DN(⃗b) = DN(⃗b), since b⃗ ∈ (Z2)
N

= I + T 0(⃗b), by Lemma 3.14
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.. Proof for Theorem 3.15

.Theorem 3.15

.Proof...

......

By Lemma 2.1, we may assume that the period of a⃗ is n − k
Note that 2r ≡ 0 (mod N)
By Theorem 3.2, ∃ b⃗ ∈ (Z2)

N with the period of b⃗ which is equal to
the period of a⃗

such that the cycle of a⃗ is similar to the cycle of b⃗
=⇒ ∃m ∈ N such that Dr(⃗a) = mDs(⃗b), where r, s are
nonnegative integers with k ≤ s ≤ n − 1
∵

DN(⃗b) = DN(⃗b), since b⃗ ∈ (Z2)
N

= I + T 0(⃗b), by Lemma 3.14

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 3.15

.Theorem 3.15

.Proof...

......

By Lemma 2.1, we may assume that the period of a⃗ is n − k
Note that 2r ≡ 0 (mod N)
By Theorem 3.2, ∃ b⃗ ∈ (Z2)

N with the period of b⃗ which is equal to
the period of a⃗ such that the cycle of a⃗ is similar to the cycle of b⃗

=⇒ ∃m ∈ N such that Dr(⃗a) = mDs(⃗b), where r, s are
nonnegative integers with k ≤ s ≤ n − 1
∵

DN(⃗b) = DN(⃗b), since b⃗ ∈ (Z2)
N

= I + T 0(⃗b), by Lemma 3.14
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.. Proof for Theorem 3.15

.Theorem 3.15

.Proof...

......

By Lemma 2.1, we may assume that the period of a⃗ is n − k
Note that 2r ≡ 0 (mod N)
By Theorem 3.2, ∃ b⃗ ∈ (Z2)

N with the period of b⃗ which is equal to
the period of a⃗ such that the cycle of a⃗ is similar to the cycle of b⃗
=⇒ ∃m ∈ N such that Dr(⃗a) = mDs(⃗b), where r, s are
nonnegative integers with k ≤ s ≤ n − 1
∵

DN(⃗b) = DN(⃗b), since b⃗ ∈ (Z2)
N

= I + T 0(⃗b), by Lemma 3.14
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.. Proof for Theorem 3.15
..
.
(continued...)..

......

= I + I (⃗b)
= I (⃗b) + I (⃗b)
= 0⃗, since I (⃗b) ∈ (Z2)

6

∴

Dr+N(⃗a) = DN(Dr(⃗a))
= DN(mDs(⃗b))
= mDN+s(⃗b)
= mDs(DN(⃗b))
= mDs(0⃗)
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.. Proof for Theorem 3.15
..
.
(continued...)..

......

= I + I (⃗b)
= I (⃗b) + I (⃗b)
= 0⃗, since I (⃗b) ∈ (Z2)

6

∴

Dr+N(⃗a) = DN(Dr(⃗a))
= DN(mDs(⃗b))
= mDN+s(⃗b)
= mDs(DN(⃗b))
= mDs(0⃗)
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.. Proof for Theorem 3.15

.
(continued...)..

......

= m0⃗

= 0⃗

On the other hand, we know that
D(0⃗) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = 0⃗ = D0(0⃗)
=⇒ the period of 0⃗ is 1− 0 = 1 and the 1-cycle of 0⃗ is 0⃗
=⇒ the cycle of a⃗ is similar to the 1-cycle of 0⃗
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.. Proof for Theorem 3.15

.
(continued...)..

......

= m0⃗

= 0⃗

On the other hand, we know that
D(0⃗) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = 0⃗ = D0(0⃗)

=⇒ the period of 0⃗ is 1− 0 = 1 and the 1-cycle of 0⃗ is 0⃗
=⇒ the cycle of a⃗ is similar to the 1-cycle of 0⃗
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.. Proof for Theorem 3.15

.
(continued...)..

......

= m0⃗

= 0⃗

On the other hand, we know that
D(0⃗) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = 0⃗ = D0(0⃗)
=⇒ the period of 0⃗ is 1− 0 = 1 and the 1-cycle of 0⃗ is 0⃗

=⇒ the cycle of a⃗ is similar to the 1-cycle of 0⃗
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.. Proof for Theorem 3.15

.
(continued...)..

......

= m0⃗

= 0⃗

On the other hand, we know that
D(0⃗) = D(0, 0, · · · , 0) = (0, 0, · · · , 0) = 0⃗ = D0(0⃗)
=⇒ the period of 0⃗ is 1− 0 = 1 and the 1-cycle of 0⃗ is 0⃗
=⇒ the cycle of a⃗ is similar to the 1-cycle of 0⃗
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.. Proof for Theorem 4.1

.Theorem 4.1

.Proof...

......

Given a⃗ ∈ A6

Let e⃗1 = (1, 0, 0, 0, 0, 0)
=⇒ D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

D5(⃗e1) = (1, 1, 1, 0, 0, 1)

D6(⃗e1) = (0, 0, 1, 0, 1, 0)
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.. Proof for Theorem 4.1

.Theorem 4.1

.Proof...

......

Given a⃗ ∈ A6

Let e⃗1 = (1, 0, 0, 0, 0, 0)

=⇒ D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

D5(⃗e1) = (1, 1, 1, 0, 0, 1)

D6(⃗e1) = (0, 0, 1, 0, 1, 0)
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.. Proof for Theorem 4.1

.Theorem 4.1

.Proof...

......

Given a⃗ ∈ A6

Let e⃗1 = (1, 0, 0, 0, 0, 0)
=⇒ D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

D5(⃗e1) = (1, 1, 1, 0, 0, 1)

D6(⃗e1) = (0, 0, 1, 0, 1, 0)
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.. Proof for Theorem 4.1

.
(continued...)..

......

D7(⃗e1) = (0, 1, 1, 1, 1, 0)

D8(⃗e1) = (1, 0, 0, 0, 1, 0)

= D2(⃗e1)

=⇒ the period of e⃗1 is (8− 2) = 6
By Theorem 3.13(c), the period of a⃗ divides 6 and the maximal
period of 6-tuples in A6 is equal to 6
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.. Proof for Theorem 4.1

.
(continued...)..

......

D7(⃗e1) = (0, 1, 1, 1, 1, 0)

D8(⃗e1) = (1, 0, 0, 0, 1, 0)

= D2(⃗e1)

=⇒ the period of e⃗1 is (8− 2) = 6

By Theorem 3.13(c), the period of a⃗ divides 6 and the maximal
period of 6-tuples in A6 is equal to 6
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.. Proof for Theorem 4.1

.
(continued...)..

......

D7(⃗e1) = (0, 1, 1, 1, 1, 0)

D8(⃗e1) = (1, 0, 0, 0, 1, 0)

= D2(⃗e1)

=⇒ the period of e⃗1 is (8− 2) = 6
By Theorem 3.13(c), the period of a⃗ divides 6 and the maximal
period of 6-tuples in A6 is equal to 6
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.. Proof for Lemma 4.2

.Lemma 4.2

.Proof...

......

We prove it by enumerating as shown in the following diagrams:

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

.

(1, 0, 1, 0, 1, 0)

→: a Ducci process
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.. Proof for Lemma 4.2

.Lemma 4.2

.Proof...

......

We prove it by enumerating as shown in the following diagrams:

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

.

(1, 0, 1, 0, 1, 0)

→: a Ducci process
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.. Proof for Lemma 4.2

.Lemma 4.2

.Proof...

......

We prove it by enumerating as shown in the following diagrams:

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

.

(1, 0, 1, 0, 1, 0)

→: a Ducci process
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.. Proof for Lemma 4.2
.
(continued...)..

......

..

(0, 1, 1, 0, 1, 1)

.(1, 1, 0, 1, 1, 0) .(1, 0, 1, 1, 0, 1)

.

(1, 0, 1, 1, 0, 0)

.

(1, 0, 0, 0, 1, 1)

.

(0, 1, 1, 1, 0, 0)

.

(0, 0, 1, 0, 0, 1)

.

(1, 1, 1, 0, 0, 0)

.

(0, 0, 0, 1, 1, 1)

.

(0, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 1, 0)

.

(1, 1, 0, 0, 0, 1)

→: a Ducci process
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.. Proof for Lemma 4.2
.
(continued...)..

......

..

(0, 1, 1, 0, 1, 1)

.(1, 1, 0, 1, 1, 0) .(1, 0, 1, 1, 0, 1).

(1, 0, 1, 1, 0, 0)

.

(1, 0, 0, 0, 1, 1)

.

(0, 1, 1, 1, 0, 0)

.

(0, 0, 1, 0, 0, 1)

.

(1, 1, 1, 0, 0, 0)

.

(0, 0, 0, 1, 1, 1)

.

(0, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 1, 0)

.

(1, 1, 0, 0, 0, 1)

→: a Ducci process
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.. Proof for Lemma 4.2
.
(continued...)..

......

..(0, 1, 0, 0, 0, 1) . (1, 1, 0, 0, 1, 1).

(0, 0, 1, 1, 1, 1)

.

(0, 1, 0, 1, 0, 0)

.

(0, 0, 0, 1, 0, 1)

.

(1, 1, 1, 1, 0, 0)

.
(1, 1, 0, 0, 0, 0)

.

(0, 1, 0, 0, 0, 0)

.

(1, 0, 1, 1, 1, 1)

.
(1, 0, 1, 1, 1, 0)

.

(1, 0, 0, 1, 0, 1)

.

(0, 1, 1, 0, 1, 0)

.

(0, 0, 1, 1, 0, 0)

.
(1, 1, 1, 0, 1, 1)

.

(0, 0, 0, 1, 0, 0)

.

(1, 0, 1, 0, 1, 1)

.

(1, 0, 0, 1, 1, 0)

.

(0, 1, 1, 0, 0, 1)

.

(0, 0, 0, 0, 1, 1)

.

(1, 1, 1, 1, 1, 0)

.

(0, 0, 0, 0, 0, 1)

.

(1, 1, 1, 0, 1, 0)

.
(1, 0, 1, 0, 0, 1)

.

(0, 1, 0, 1, 1, 0)

→: a Ducci process

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Lemma 4.2
.
(continued...)..

......

..(0, 1, 0, 0, 0, 1) . (1, 1, 0, 0, 1, 1).

(0, 0, 1, 1, 1, 1)

.

(0, 1, 0, 1, 0, 0)

.

(0, 0, 0, 1, 0, 1)

.

(1, 1, 1, 1, 0, 0)

.
(1, 1, 0, 0, 0, 0)

.

(0, 1, 0, 0, 0, 0)

.

(1, 0, 1, 1, 1, 1)

.
(1, 0, 1, 1, 1, 0)

.

(1, 0, 0, 1, 0, 1)

.

(0, 1, 1, 0, 1, 0)

.

(0, 0, 1, 1, 0, 0)

.
(1, 1, 1, 0, 1, 1)

.

(0, 0, 0, 1, 0, 0)

.

(1, 0, 1, 0, 1, 1)

.

(1, 0, 0, 1, 1, 0)

.

(0, 1, 1, 0, 0, 1)

.

(0, 0, 0, 0, 1, 1)

.

(1, 1, 1, 1, 1, 0)

.

(0, 0, 0, 0, 0, 1)

.

(1, 1, 1, 0, 1, 0)

.
(1, 0, 1, 0, 0, 1)

.

(0, 1, 0, 1, 1, 0)

→: a Ducci process
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.. Proof for Lemma 4.2
.
(continued...)..

......

..(1, 0, 0, 0, 1, 0) . (1, 0, 0, 1, 1, 1).

(0, 1, 1, 1, 1, 0)

.

(1, 0, 1, 0, 0, 0)

.

(0, 0, 1, 0, 1, 0)

.

(1, 1, 1, 0, 0, 1)

.
(1, 0, 0, 0, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

.
(0, 1, 1, 1, 0, 1)

.

(0, 0, 1, 0, 1, 1)

.

(1, 1, 0, 1, 0, 0)

.

(0, 1, 1, 0, 0, 0)

.
(1, 1, 0, 1, 1, 1)

.

(0, 0, 1, 0, 0, 0)

.

(0, 1, 0, 1, 1, 1)

.

(1, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 0, 1)

.

(0, 0, 0, 1, 1, 0)

.

(1, 1, 1, 1, 0, 1)

.

(0, 0, 0, 0, 1, 0)

.

(1, 1, 0, 1, 0, 1)

.
(1, 0, 1, 1, 0, 0)

.

(0, 1, 0, 0, 1, 1)

→: a Ducci process
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.. Proof for Lemma 4.2
.
(continued...)..

......

..(1, 0, 0, 0, 1, 0) . (1, 0, 0, 1, 1, 1).

(0, 1, 1, 1, 1, 0)

.

(1, 0, 1, 0, 0, 0)

.

(0, 0, 1, 0, 1, 0)

.

(1, 1, 1, 0, 0, 1)

.
(1, 0, 0, 0, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

.
(0, 1, 1, 1, 0, 1)

.

(0, 0, 1, 0, 1, 1)

.

(1, 1, 0, 1, 0, 0)

.

(0, 1, 1, 0, 0, 0)

.
(1, 1, 0, 1, 1, 1)

.

(0, 0, 1, 0, 0, 0)

.

(0, 1, 0, 1, 1, 1)

.

(1, 1, 0, 0, 1, 0)

.

(0, 0, 1, 1, 0, 1)

.

(0, 0, 0, 1, 1, 0)

.

(1, 1, 1, 1, 0, 1)

.

(0, 0, 0, 0, 1, 0)

.

(1, 1, 0, 1, 0, 1)

.
(1, 0, 1, 1, 0, 0)

.

(0, 1, 0, 0, 1, 1)

→: a Ducci process
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.. Proof for Theorem 4.3

.Theorem 4.3

.Proof...

......It follows from Theorem 3.2 and Lemma 4.2.
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.. Proof for Lemma 4.4
..

.Lemma 4.4

.Proof...

......

Write e = (1)(2)(3)(4)(5)(6) which is the identity element of D6

Claim 1: e ∗ a⃗ = a⃗, ∀ a⃗ ∈ A6

.Proof...

......

Given a⃗ = (a1, a2, · · · , a6) ∈ A6

e ∗ a⃗ = (ae(1), ae(2), · · · , ae(6))

= (a1, a2, · · · , a6)
= a⃗
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.. Proof for Lemma 4.4
..

.Lemma 4.4

.Proof...

......

Write e = (1)(2)(3)(4)(5)(6) which is the identity element of D6

Claim 1: e ∗ a⃗ = a⃗, ∀ a⃗ ∈ A6

.Proof...

......

Given a⃗ = (a1, a2, · · · , a6) ∈ A6

e ∗ a⃗ = (ae(1), ae(2), · · · , ae(6))

= (a1, a2, · · · , a6)
= a⃗
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.. Proof for Lemma 4.4
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Claim 2: (π1 ◦ π2) ∗ a⃗ = π1 ∗ (π2 ∗ a⃗), ∀π1, π2 ∈ D6 and a⃗ ∈ A6

.Proof...

......
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.. Proof for Remark 4.7

.Remark 4.7

.Proof...

......

By assumption, we know that a1, a2, · · · , a6 ∈ {0, 1}

=⇒ 1− a1, 1− a2, · · · , 1− a6 ∈ {0, 1}
=⇒ a⃗c = (1− a1, 1− a2, · · · , 1− a6) ∈ (Z2)

6
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.. Proof for Lemma 4.8
..

.Lemma 4.8

.Proof...

......

Write a⃗c = (b1, b2, · · · , b6)
=⇒ bi = 1− ai, ∀ i = 1, 2, · · · , 6
Given π ∈ D6

Note that

π ∗ a⃗c = (bπ(1), bπ(2), · · · , bπ(6))
= (1− aπ(1), 1− aπ(2), · · · , 1− aπ(6))

and

(π ∗ a⃗)c = (aπ(1), aπ(2), · · · , aπ(6))c

= (1− aπ(1), 1− aπ(2), · · · , 1− aπ(6))

∴ π ∗ a⃗c = (π ∗ a⃗)c
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..
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......
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.. Proof for Lemma 4.9
..

.Lemma 4.9

.Proof...

......

For each π ∈ D6, let Zπ = {z ∈ (Z2)
6 | π ∗ z = z}

By the Burnside’s Lemma, we obtain:

|(Z2)
6
/
≡| = 1

|D6|
∑
π∈D6

|Zπ|

=
1

12
(26 + 2 + 22 + 23 + 22 + 2 + 23 + 24 + 23 + 24 + 23 + 24)

=
1

12
(64 + 2 + 4 + 8 + 4 + 2 + 8 + 16 + 8 + 16 + 8 + 16)

=
1

12
· 156

= 13
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.. Proof for Lemma 4.9

.
(continued...)..

......

Finally, we enumerate 13 equivalence classes of (Z2)
6:

By Lemma 4.8, it is reduced to write out [(0, 0, 0, 0, 0, 0)],
[(1, 0, 0, 0, 0, 0)], [(0, 0, 1, 0, 0, 1)], [(1, 0, 0, 0, 0, 1)], [(1, 0, 0, 0, 1, 0)],
[(0, 0, 0, 1, 1, 1)], [(0, 0, 1, 0, 1, 1)], [(0, 1, 0, 1, 0, 1)]:
[(0, 0, 0, 0, 0, 0)] = {(0, 0, 0, 0, 0, 0)}
[(1, 0, 0, 0, 0, 0)] = {(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}
[(0, 0, 1, 0, 0, 1)] = {(0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0)}
[(1, 0, 0, 0, 0, 1)] = {(1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0),
(0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1)}
[(1, 0, 0, 0, 1, 0)] = {(1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1),
(1, 0, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0), (0, 0, 0, 1, 0, 1)}
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(0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}
[(0, 0, 1, 0, 0, 1)] = {(0, 0, 1, 0, 0, 1), (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0)}
[(1, 0, 0, 0, 0, 1)] = {(1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0),
(0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1)}
[(1, 0, 0, 0, 1, 0)] = {(1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1),
(1, 0, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0), (0, 0, 0, 1, 0, 1)}
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.. Proof for Lemma 4.9

.
(continued..)..

......

[(0, 0, 0, 1, 1, 1)] = {(0, 0, 0, 1, 1, 1), (1, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0)}

[(0, 0, 1, 0, 1, 1)] = {(0, 0, 1, 0, 1, 1), (1, 0, 0, 1, 0, 1),
(1, 1, 0, 0, 1, 0), (0, 1, 1, 0, 0, 1), (1, 0, 1, 1, 0, 0), (0, 1, 0, 1, 1, 0),
(1, 1, 0, 1, 0, 0), (0, 1, 1, 0, 1, 0), (0, 0, 1, 1, 0, 1), (1, 0, 0, 1, 1, 0),
(0, 1, 0, 0, 1, 1), (1, 0, 1, 0, 0, 1)}
[(0, 1, 0, 1, 0, 1)] = {(0, 1, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0)}
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.. Proof for Lemma 4.9

.
(continued..)..

......

[(0, 0, 0, 1, 1, 1)] = {(0, 0, 0, 1, 1, 1), (1, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0)}
[(0, 0, 1, 0, 1, 1)] = {(0, 0, 1, 0, 1, 1), (1, 0, 0, 1, 0, 1),
(1, 1, 0, 0, 1, 0), (0, 1, 1, 0, 0, 1), (1, 0, 1, 1, 0, 0), (0, 1, 0, 1, 1, 0),
(1, 1, 0, 1, 0, 0), (0, 1, 1, 0, 1, 0), (0, 0, 1, 1, 0, 1), (1, 0, 0, 1, 1, 0),
(0, 1, 0, 0, 1, 1), (1, 0, 1, 0, 0, 1)}

[(0, 1, 0, 1, 0, 1)] = {(0, 1, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0)}
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.. Proof for Lemma 4.9

.
(continued..)..

......

[(0, 0, 0, 1, 1, 1)] = {(0, 0, 0, 1, 1, 1), (1, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0)}
[(0, 0, 1, 0, 1, 1)] = {(0, 0, 1, 0, 1, 1), (1, 0, 0, 1, 0, 1),
(1, 1, 0, 0, 1, 0), (0, 1, 1, 0, 0, 1), (1, 0, 1, 1, 0, 0), (0, 1, 0, 1, 1, 0),
(1, 1, 0, 1, 0, 0), (0, 1, 1, 0, 1, 0), (0, 0, 1, 1, 0, 1), (1, 0, 0, 1, 1, 0),
(0, 1, 0, 0, 1, 1), (1, 0, 1, 0, 0, 1)}
[(0, 1, 0, 1, 0, 1)] = {(0, 1, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0)}
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.. Proof for Theorem 4.10

.Theorem 4.10

.Proof...

......

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

→: a Ducci process
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.. Proof for Theorem 4.10

.Theorem 4.10

.Proof...

......

..

(0, 0, 0, 0, 0, 0)

.(1, 1, 1, 1, 1, 1).

(0, 1, 0, 1, 0, 1)

→: a Ducci process
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.. Proof for Theorem 4.10

.Theorem 4.10

.continued.....

......

..

(0, 1, 1, 0, 1, 1)

.(0, 0, 1, 0, 0, 1).

(0, 0, 0, 1, 1, 1)

→: a Ducci process
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.. Proof for Theorem 4.10

.Theorem 4.10

.continued.....

......

..

(0, 1, 1, 0, 1, 1)

.(0, 0, 1, 0, 0, 1).

(0, 0, 0, 1, 1, 1)

→: a Ducci process
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.. Proof for Theorem 4.10

.Theorem 4.10

.continued.....

......

.. (1, 0, 0, 1, 1, 1).(1, 0, 0, 0, 1, 0)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

→: a Ducci process

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Proof for Theorem 4.10

.Theorem 4.10

.continued.....

......

.. (1, 0, 0, 1, 1, 1).(1, 0, 0, 0, 1, 0) .

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 0, 1)

.

(0, 1, 1, 1, 1, 1)

.

(1, 0, 0, 0, 0, 0)

→: a Ducci process
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.. Proof for Corollary 4.11

.Corollary 4.11

.Proof...

......It follows from Theorem 3.2 and Theorem 4.10.
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.. Proof for Theorem 4.12
..

.Theorem 4.12

.Proof...

......

“⇒” Suppose that r is the period of a⃗ for some a⃗ ∈ A6

By Theorem 3.13(c), the period of a⃗ divides the period
of e⃗1
Therefore, r divides the period of e⃗1

“⇐” Suppose the condition holds
Note that

D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

= (1, 0, 0, 0, 1, 0), by the proof in Lemma 4.9
= D2(⃗e1)
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.. Proof for Theorem 4.12
..

.Theorem 4.12

.Proof...

......

“⇒” Suppose that r is the period of a⃗ for some a⃗ ∈ A6

By Theorem 3.13(c), the period of a⃗ divides the period
of e⃗1
Therefore, r divides the period of e⃗1

“⇐” Suppose the condition holds
Note that

D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

= (1, 0, 0, 0, 1, 0), by the proof in Lemma 4.9
= D2(⃗e1)
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.. Proof for Theorem 4.12
..

.Theorem 4.12

.Proof...

......

“⇒” Suppose that r is the period of a⃗ for some a⃗ ∈ A6

By Theorem 3.13(c), the period of a⃗ divides the period
of e⃗1
Therefore, r divides the period of e⃗1

“⇐” Suppose the condition holds

Note that

D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

= (1, 0, 0, 0, 1, 0), by the proof in Lemma 4.9
= D2(⃗e1)
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.. Proof for Theorem 4.12
..

.Theorem 4.12

.Proof...

......

“⇒” Suppose that r is the period of a⃗ for some a⃗ ∈ A6

By Theorem 3.13(c), the period of a⃗ divides the period
of e⃗1
Therefore, r divides the period of e⃗1

“⇐” Suppose the condition holds
Note that

D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

= (1, 0, 0, 0, 1, 0), by the proof in Lemma 4.9
= D2(⃗e1)
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.. Proof for Theorem 4.12

.
(continued...)..

......

“⇐” By Remark 4.5(a) and Lemma 4.9, we know that
e⃗1,D(⃗e1),D2(⃗e1),D3(⃗e1) are all distinct

∴ the period of e⃗1 is (4− 2) = 2
By assumption, we know that r | 2
So, we have the following two cases:

Case 1: r = 1 Choose
a⃗ = (0, 0, 0, 0, 0, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 0, 0, 0, 0) and the period of a⃗ is 1
=⇒ the period of a⃗ is r
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.. Proof for Theorem 4.12

.
(continued...)..

......

“⇐” By Remark 4.5(a) and Lemma 4.9, we know that
e⃗1,D(⃗e1),D2(⃗e1),D3(⃗e1) are all distinct
∴ the period of e⃗1 is (4− 2) = 2

By assumption, we know that r | 2
So, we have the following two cases:

Case 1: r = 1 Choose
a⃗ = (0, 0, 0, 0, 0, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 0, 0, 0, 0) and the period of a⃗ is 1
=⇒ the period of a⃗ is r
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.. Proof for Theorem 4.12

.
(continued...)..

......

“⇐” By Remark 4.5(a) and Lemma 4.9, we know that
e⃗1,D(⃗e1),D2(⃗e1),D3(⃗e1) are all distinct
∴ the period of e⃗1 is (4− 2) = 2
By assumption, we know that r | 2
So, we have the following two cases:

Case 1: r = 1

Choose
a⃗ = (0, 0, 0, 0, 0, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 0, 0, 0, 0) and the period of a⃗ is 1
=⇒ the period of a⃗ is r
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.. Proof for Theorem 4.12

.
(continued...)..

......

“⇐” By Remark 4.5(a) and Lemma 4.9, we know that
e⃗1,D(⃗e1),D2(⃗e1),D3(⃗e1) are all distinct
∴ the period of e⃗1 is (4− 2) = 2
By assumption, we know that r | 2
So, we have the following two cases:

Case 1: r = 1 Choose
a⃗ = (0, 0, 0, 0, 0, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 0, 0, 0, 0) and the period of a⃗ is 1
=⇒ the period of a⃗ is r
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.. Proof for Theorem 4.12

.
(continued...)..

......

“⇐” By Remark 4.5(a) and Lemma 4.9, we know that
e⃗1,D(⃗e1),D2(⃗e1),D3(⃗e1) are all distinct
∴ the period of e⃗1 is (4− 2) = 2
By assumption, we know that r | 2
So, we have the following two cases:

Case 1: r = 1 Choose
a⃗ = (0, 0, 0, 0, 0, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 0, 0, 0, 0) and the period of a⃗ is 1

=⇒ the period of a⃗ is r
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.. Proof for Theorem 4.12

.
(continued...)..

......

“⇐” By Remark 4.5(a) and Lemma 4.9, we know that
e⃗1,D(⃗e1),D2(⃗e1),D3(⃗e1) are all distinct
∴ the period of e⃗1 is (4− 2) = 2
By assumption, we know that r | 2
So, we have the following two cases:

Case 1: r = 1 Choose
a⃗ = (0, 0, 0, 0, 0, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 0, 0, 0, 0) and the period of a⃗ is 1
=⇒ the period of a⃗ is r
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.. Proof for Theorem 4.2

.
(continued...)..

......

“⇐” Case 2: r = 2
Take a⃗ = (0, 0, 1, 0, 1, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0) and the
period of a⃗ is 2

=⇒ the period of a⃗ is r
By Case 1 and 2, we complete this proof
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.. Proof for Theorem 4.2

.
(continued...)..

......

“⇐” Case 2: r = 2
Take a⃗ = (0, 0, 1, 0, 1, 0) ∈ (Z2)

6 ⊂ A6

By Theorem 4.10, the cycle of a⃗ is
(0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0) and the
period of a⃗ is 2
=⇒ the period of a⃗ is r

By Case 1 and 2, we complete this proof
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.. Prepare for Lemma 2.6

.
Remark (2.4)..
......If 0 ≤ x, y ≤ M, then |x − y| ≤ M.

.Proof
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.. Prepare for Theorem 2.12

.
Remark (2.7)..

......
If 0 ≤ x, y ≤ M with |x − y| = M, then x, y ∈ {0,M} and at least
one of them is M.

.Proof
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.. Prepare for Theorem 2.12

.
Lemma (2.8)..

......

Let a⃗ = (a1, a2, · · · , aN), b⃗ = (b1, b2, · · · , bN) ∈ AN such that
D(⃗b) = a⃗ and max a⃗ = max b⃗ = M.

If ai ∈ {0,M}, ∀ i = 1, 2, · · · , t and at least one of them is M, then
bi ∈ {0,M}, ∀ i = 1, 2, · · · , t, t + 1 and at least one of them is M.

.Proof
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.. Prepare for Theorem 2.12

.
Lemma (2.8)..

......

Let a⃗ = (a1, a2, · · · , aN), b⃗ = (b1, b2, · · · , bN) ∈ AN such that
D(⃗b) = a⃗ and max a⃗ = max b⃗ = M.
If ai ∈ {0,M}, ∀ i = 1, 2, · · · , t and at least one of them is M, then
bi ∈ {0,M}, ∀ i = 1, 2, · · · , t, t + 1 and at least one of them is M.

.Proof
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.. A remark about Lemma 2.8

.
Remark (2.9)..

......
In Lemma 2.8, we know that 1 ≤ t ≤ N − 1, since AN is a
collection of N-tuples of nonnegative integers.
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.. Prepare for Theorem 2.12

.
Lemma (2.10)..

......

Let a⃗ ∈ AN. Suppose Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) is the
(n − k)-cycle of a⃗.

Then, there are at least i + 1 cyclic consecutive
components of D(n−1)−i(⃗a) taken from 0 or M such that at least
one of them is M, where M = max Dk(⃗a).

.Proof
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.. Prepare for Theorem 2.12

.
Lemma (2.10)..

......

Let a⃗ ∈ AN. Suppose Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) is the
(n − k)-cycle of a⃗. Then, there are at least i + 1 cyclic consecutive
components of D(n−1)−i(⃗a) taken from 0 or M such that at least
one of them is M, where M = max Dk(⃗a).

.Proof
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.. Prepare for Theorem 2.12

.
Remark (2.11)..

......

In Lemma 2.10, we observe that:
(a) 0 ≤ i ≤ N − 1.

(b) If i ≤ min{n − k − 1,N − 1}, then D(n−1)−i(⃗a) is in
the (n − k)-cycle of a⃗.

.Proof

王偉名 Wei-Ming Wang Diffy 六邊形之探討 A Study about Diffy Hexagons



Introduction Ducci Sequences Similar Cycles Diffy Hexagons Appendix

.. Prepare for Theorem 2.12

.
Remark (2.11)..

......

In Lemma 2.10, we observe that:
(a) 0 ≤ i ≤ N − 1.
(b) If i ≤ min{n − k − 1,N − 1}, then D(n−1)−i(⃗a) is in

the (n − k)-cycle of a⃗.

.Proof
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.. A property about the greatest common divisor of a⃗ in AN

.
Lemma (2.18)..

......

Let a⃗ ∈ AN with a⃗ ̸= 0⃗. For all nonnegative integers r, s with
r ≤ s, then gcd Dr(⃗a) | gcd Ds(⃗a).

In particular, we have
gcd Dr(⃗a) ≤ gcd Ds(⃗a).

.Proof

.Example..

......

a⃗ = (3, 3, 3, 3, 3, 9)

D(⃗a) = (0, 0, 0, 0, 6, 6)

D2(⃗a) = (0, 0, 0, 6, 0, 6)

D3(⃗a) = (0, 0, 6, 6, 6, 6)

...

gcd a⃗ = 3

gcd D(⃗a) = 6

gcd D2(⃗a) = 6

gcd D3(⃗a) = 6

...
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.. A property about the greatest common divisor of a⃗ in AN

.
Lemma (2.18)..

......

Let a⃗ ∈ AN with a⃗ ̸= 0⃗. For all nonnegative integers r, s with
r ≤ s, then gcd Dr(⃗a) | gcd Ds(⃗a). In particular, we have
gcd Dr(⃗a) ≤ gcd Ds(⃗a).

.Proof

.Example..

......

a⃗ = (3, 3, 3, 3, 3, 9)

D(⃗a) = (0, 0, 0, 0, 6, 6)

D2(⃗a) = (0, 0, 0, 6, 0, 6)

D3(⃗a) = (0, 0, 6, 6, 6, 6)

...

gcd a⃗ = 3

gcd D(⃗a) = 6

gcd D2(⃗a) = 6

gcd D3(⃗a) = 6

...
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.. A property about the greatest common divisor of a⃗ in AN

.
Lemma (2.18)..

......

Let a⃗ ∈ AN with a⃗ ̸= 0⃗. For all nonnegative integers r, s with
r ≤ s, then gcd Dr(⃗a) | gcd Ds(⃗a). In particular, we have
gcd Dr(⃗a) ≤ gcd Ds(⃗a).

.Proof

.Example..

......

a⃗ = (3, 3, 3, 3, 3, 9)

D(⃗a) = (0, 0, 0, 0, 6, 6)

D2(⃗a) = (0, 0, 0, 6, 0, 6)

D3(⃗a) = (0, 0, 6, 6, 6, 6)

...

gcd a⃗ = 3

gcd D(⃗a) = 6

gcd D2(⃗a) = 6

gcd D3(⃗a) = 6

...
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.. The greatest common divisor of a⃗ in the cycle of a⃗

.
Lemma (2.19)..

......

Let a⃗ ∈ AN with a⃗ ̸= 0⃗.

Suppose that
Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a) is the (n − k)-cycle of a⃗. Then, we
have gcd Dr(⃗a) = gcd Ds(⃗a) for all k ≤ r, s ≤ n − 1.

.Proof

.Example..

......
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D2(⃗a) = (0, 1, 1, 0, 1, 1)

D3(⃗a) = (1, 0, 1, 1, 0, 1)

D4(⃗a) = (1, 1, 0, 1, 1, 0)

= D(⃗a)
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..
The converse of Lemma 2.6 and Lemma 2.19 may not be
true even if put them together

.
Example (2.20)..

......

e⃗1 = (1, 0, 0, 0, 0, 0) ∈ A6

D(⃗e1) = (1, 0, 0, 0, 0, 1)

D2(⃗e1) = (1, 0, 0, 0, 1, 0)

D3(⃗e1) = (1, 0, 0, 1, 1, 1)

D4(⃗e1) = (1, 0, 1, 0, 0, 0)

D5(⃗e1) = (1, 1, 1, 0, 0, 1)

D6(⃗e1) = (0, 0, 1, 0, 1, 0)

D7(⃗e1) = (0, 1, 1, 1, 1, 0)

D8(⃗e1) = (1, 0, 0, 0, 1, 0)

= D2(⃗e1)

=⇒ the period of e⃗1 is (8− 2) = 6, and the 6-cycle of e⃗1 is
D2(⃗e1),D3(⃗e1),D4(⃗e1),D5(⃗e1), D6(⃗e1),D7(⃗e1)
Note that gcd Di(⃗e1) = 1 = max Di(⃗e1) for all i = 0, 1, · · · , 7
However, D0(⃗e1) = e⃗1,D(⃗e1) are not in the cycle of e⃗1
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.. A property about the complement of N-tuples in AN
.
Lemma (3.4)..

......

Let a⃗ = (a1, a2, · · · , aN) ∈ AN and max a⃗ = M. Suppose the cycle
of a⃗ is similar to the cycle of b⃗, where b⃗ ∈ (Z2)

6 and the period of b⃗
is equal to the period of a⃗.

If a⃗c = (M − a1,M − a2, · · · ,M − aN),
then the cycle of a⃗c is similar to the cycle of b⃗.

.Proof

.Example..

......

a⃗ = (0, 2, 4, 4, 2, 0)

D(⃗a) = (2, 2, 0, 2, 2, 0)

D2(⃗a) = (0, 2, 2, 0, 2, 2)

D3(⃗a) = (2, 0, 2, 2, 0, 2)

D4(⃗a) = (2, 2, 0, 2, 2, 0) = D(⃗a)

a⃗c = (4, 2, 0, 0, 2, 4)

D(a⃗c) = (2, 2, 0, 2, 2, 0)

D2(a⃗c) = (0, 2, 2, 0, 2, 2)

D3(a⃗c) = (2, 0, 2, 2, 0, 2)

D4(a⃗c) = (2, 2, 0, 2, 2, 0)=D(a⃗c)
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.. A remark about the proof in Lemma 3.4

.
Remark (3.5)..
......In the proof of Lemma 3.4, Ds+1(⃗b) is in the cycle of b⃗.

.Proof
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.. Notations

Now, we define T : AN → AN by

T(x1, x2, · · · , xN−1, xN) = (x2, x3, · · · , xN, x1)

for all (x1, x2, · · · , xN−1, xN) ∈ AN.

Clearly, T is well-defined.
On the other hand, we fix the following notations:
D = D |(Z2)N ,T = T |(Z2)N , and D0 = T 0 = I , where I is the
identity on (Z2)

N.
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.. A property about the complement of N-tuples in cycles

.
Lemma (3.6)..

......

Let a⃗ = (a1, a2, · · · , aN) ∈ AN and max a⃗=M. Suppose that

Dk(⃗a),Dk+1(⃗a), · · · ,Dn−1(⃗a)

is the (n− k)-cycle of a⃗.

Then, a⃗c = (M− a1,M− a2, · · · ,M− aN)
is in the (n − k)-cycle of a⃗ if and only if a⃗ = 0⃗.

.Proof
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.. A property about the complement of N-tuples in cycles
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Lemma (3.6)..

......
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.. A property about D and T

.
Lemma (3.7)..

......

Let x⃗, y⃗ ∈ AN and c be a nonnegative integer, then
(a) T(c⃗x + y⃗) = cT(⃗x) + T(⃗y).
(b) D ◦ T = T ◦ D.

.Proof
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.. Prepare for Theorem 3.13

.
Remark (3.8)..
......Let x, y ∈ Z2. Then, |x − y| = x + y.

.Proof
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.. Prepare for Theorem 3.13

.
Remark (3.9)..

......

Let L : (Z2)
N → (Z2)

N be a function.

Then, we know that L is
a linear transformation if and only if L (⃗x + y⃗) = L (⃗x) + L (⃗y) for
all x⃗, y⃗ ∈ (Z2)

N.

.Proof
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.. Prepare for Theorem 3.13

.
Remark (3.9)..

......

Let L : (Z2)
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.. A property about T

.
Lemma (3.10)..
......T i is a linear transformation for each i = 0, 1, 2, · · · .

.Proof
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.. A property about D

.
Lemma (3.11)..
......D i is a linear transformation for each i = 0, 1, 2, · · · .

.Proof
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.. Prepare for Theorem 3.13

.
Lemma (3.12)..

......

Let a⃗ ∈ AN. Suppose that r, s, t are nonnegative integers such that
s ≤ r and s ≤ t.

If Dr(⃗a) = Ds(⃗a), then

D(r−s)i(Dt(⃗a)) = Dt(⃗a)

for each i = 0, 1, 2, · · · .

.Proof
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.. Prepare for Theorem 3.13
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......
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.. Prepare for Theorem 3.15

.
Lemma (3.14)..

......

Let r, s be nonnegative integers. Then, we have:
(a) D = I + T .

(b) If 2r ≡ s (mod N), then D2r
= I + T s.

.Proof
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= I + T s.

.Proof
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.. Similar cycles of 6-tuples in A6

.
Theorem (4.3)..

......

Let a⃗ ∈ A6. Then, the cycle of a⃗ is similar to one of the following
cycles:
(i) (1-cycle) (0, 0, 0, 0, 0, 0).

(ii) (3-cycle) (0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0).
(iii) (6-cycle) (0, 1, 0, 0, 0, 1), (1, 1, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0),

(1, 1, 1, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0, 1, 1, 1, 1).
(iv) (6-cycle) (1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 1), (1, 0, 1, 0, 0, 0),

(1, 1, 1, 0, 0, 1), (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0).

.Proof
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.. The complement of 6-tuples in (Z2)
6

.
Definition (4.6)..

......
Let a⃗ = (a1, a2, · · · , a6) ∈ (Z2)

6. The complement of a⃗ is defined
to be (1− a1, 1− a2, · · · , 1− a6) and we denote it by a⃗c.

.
Remark (4.7)..
......If a⃗ = (a1, a2, · · · , a6) ∈ (Z2)

6, then a⃗c ∈ (Z2)
6.

.Proof
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.. The complement of 6-tuples in (Z2)
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Definition (4.6)..
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.. A property of the complement of 6-tuples in (Z2)
6

.
Lemma (4.8)..

......
If a⃗ = (a1, a2, · · · , a6) ∈ (Z2)

6, then π ∗ a⃗c = (π ∗ a⃗)c for all
π ∈ D6.

.Proof
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.. Similar cycles of Diffy Hexagons

.
Corollary (4.11)..

......

Let a⃗ ∈ A6. Then, the cycle of a⃗ is similar to one of the following
cycles:
(i) (1-cycle) (0, 0, 0, 0, 0, 0).

(ii) (1-cycle) (0, 1, 1, 0, 1, 1).
(iii) (2-cycle) (0, 0, 1, 0, 1, 0), (0, 1, 1, 1, 1, 0).

.Proof
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......
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.. The period of Diffy N-gons

Let r, s be positive integers. Suppose that N = 2s and
e⃗1 = (1, 0, · · · , 0) ∈ AN.

By Theorem 3.15, all similar cycles of
N-tuples in AN are 1-cycle of 0⃗ which implies the period of every
N-tuples in AN is 1, and hence the conclusion in Theorem 4.12,
that is r is the period of a⃗ for some a⃗ ∈ AN if and only if r divides
the period of e⃗1, is true without identification we use in this
chapter. However, above conclusion does not hold in A6 due to
Lemma 4.2.
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.. The period of Diffy N-gons

If we had enough time, we would like to have further discussions
about that at what positive integer N above conclusion holds (even
if the identification we use in this chapter is necessary).
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