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INTRODUCTION

Diffy Hexagons

The Diffy Hexagons which are generalized Diffy Boxes are games
with the following procedures:
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INTRODUCTION

Step 1

Arrange six nonnegative integers around a regular hexagon.
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INTRODUCTION

Step 2

Produce another regular hexagon of six nonnegative integers from
the one obtained in Step 1:
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INTRODUCTION

Step 2-1

For each adjacent pair of numbers, compute the absolute value of
their difference and place it between them.

1 o—1] o

1 -0 |0 — 0

|0 — 0| |0 — 0|

0 jo—o0 O
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INTRODUCTION

Step 2-1
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Step 2-2

Remove the original numbers.
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INTRODUCTION

Step 2-3

Remove the original regular hexagon.
1
*

1e +0

0e *0

e
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INTRODUCTION

Step 2-4

Form the new regular hexagon with the remaining numbers.

FER] WEL-MING WANG DIFry 7VGERZIRET A STU



INTRODUCTION

Step 3

To obtain a sequence of regular hexagons of six nonnegative
integers by performing Step 2 over and over.
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INTRODUCTION

Notations

Without loss of generality, we denote a regular hexagon of six
nonnegative integers as follows:

where b; = |a; — ai1|, ¢; = |bi — bir1], bs = |ag — ay|, and
Cg — |b6— b1|, 1= 1,2,-" ,5.
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INTRODUCTION

Notations

From now on, let N be a positive integer with N > 2
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INTRODUCTION

Notations

From now on, let N be a positive integer with N > 2 and denote
the set of all N-tuples of nonnegative integers by Ay.
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INTRODUCTION

Notations

From now on, let N be a positive integer with N > 2 and denote
the set of all N-tuples of nonnegative integers by Ay.
Define D: Ay — Ay by

D(a1, a2,--- ,an) = (|ar — ag|, --- ,|any—1 — an|, |ay — a1])

for all (a1, ag, - ,an) € An.
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INTRODUCTION

Notations

From now on, let N be a positive integer with N > 2 and denote
the set of all N-tuples of nonnegative integers by Ay.
Define D: Ay — Ay by

D(a1, a2,--- ,an) = (|ar — ag|, --- ,|any—1 — an|, |ay — a1])

for all (a1, ag, - ,an) € An.
Then, D is a well-defined function.
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INTRODUCTION

Ducci processes

Definition (1.1)
The function D : Ay — Ay defined by

D(ay, a9, - ,an) = (a1 — agl, -+, |an—1 — an], |ay — a1])

for all (ay, ag,---,an) € Ay is called a Ducci process.
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INTRODUCTION

Ducci sequences of N-tuples in Ay

Definition (1.2)
Let @ = (a1, a2, -+ ,an) € An. A sequence of the form that
d, D(@), D*(@),--- is called the Ducci sequence of @.
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INTRODUCTION

Ducci sequences of N-tuples in Ay

Definition (1.2)
Let @ = (a1, a2, -+ ,an) € An. A sequence of the form that

d, D(@), D*(@), - - - is called the Ducci sequence of . On the other
hand, we denote @ by D°(@).
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INTRODUCTION

Diffy Hexagon games

Note that a 6-tuple of nonnegative integers is regarded as written
in a regular hexagon, and hence a Ducci sequence of 6-tuples in Ag
is regarded as a sequence of regular hexagons, that is, a Diffy
Hexagon game.
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Ducct SEQUENCES

Existence of the period of Ducci sequences

Let @ € Ay. Then, there are nonnegative integers n, k with n > k
such that D™(@) = D*(d).
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INTRODUCTIO! Ducct SEQUENCES SIMILAR CYCLES DIFFY HEXAGONS

Existence of the period of Ducci sequences

Let @ € Ay. Then, there are nonnegative integers n, k with n > k
such that D™(@) = D*(d).

Example

i=(1,0,0,2,1,0) D5(d@) = (1,0,0,0,1,0)
D(d@) = (1,0,2,1,1,1) D'(@) = (1,0,0,1,1,1)
D*(d@) = (1,2,1,0,0,0) D3(@) = (1,0,1,0,0,0)
D*(@) = (1,1,1,0,0,1) D°(@) = (1,1,1,0,0,1)
DY(@) = (0,0,1,0,1,0) = D3(d)
D°(@) = (0,1,1,1,1,0)
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Ducct SEQUENCES

The period and cycle of Ducci sequences

Definition (2.2)

Let @ € Ay. Suppose that n is the positive integer such that

d, D(@), D*(d@),---, D""1(@) are all distinct and D*(d) = D¥(d),
where 0 < k< n-—1.
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Ducct SEQUENCES

The period and cycle of Ducci sequences

Definition (2.2)

Let @ € Ay. Suppose that n is the positive integer such that

d, D(@), D*(d@),---, D""1(@) are all distinct and D*(d) = D¥(d),
where 0 < k< n-—1.

We define the period of d to be n— k
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Ducct SEQUENCES

The period and cycle of Ducci sequences

Definition (2.2)

Let @ € Ay. Suppose that n is the positive integer such that

d, D(@), D*(d@),---, D""1(@) are all distinct and D*(d) = D¥(d),
where 0 < k< n-—1.

We define the period of @ to be n — k and the (n — k)-cycle of @
(or simply the cycle of @) to be D*(@), D**1(d),--- , D" 1(a).
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Ducct SEQUENCES

The largest component of N-tuples in Ay

Definition (2.3)

Let @ € An. The the largest component of a is denoted by max .
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Ducct SEQUENCES

A property about the largest component of N-tuples in Ay

Let @ € An. For all nonnegative integers r, s with r > s, then we
have max D"(@) < max D*(q).
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INTRODUCTIO Ducct SEQUENCES SIMILAR CYCLES DIFFY HEXAGONS APPENDIX

A property about the largest component of N-tuples in Ay

Let @ € An. For all nonnegative integers r, s with r > s, then we
have max D"(@) < max D*(ad).

=(1,0,0,2,1,0) max a = 2
D( ) (1,0,2,1,1,1) max D(d) = 2
D*(@) = (1,2,1,0,0,0) max D? (@) = 2
D¥(d@) = (1,1,1,0,0,1) max D?(d@) = 1
D@) = (0,0,1,0,1,0) max D*(d) =1
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Ducct SEQUENCES

The largest component of N-tuples in the cycle

Let @ € Ay. Suppose D*(a@), D*1(d),--- , D"~ 1(d) is the
(n — k)-cycle of @. Then,

max D"(d) = max D°(d),Vk<rs<mn-—1.
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Ducct SEQUENCES

The largest component of N-tuples in the cycle

Let @ € Ay. Suppose D*(a@), D*1(d),--- , D"~ 1(d) is the
(n — k)-cycle of @. Then,

max D"(d) = max D°(d),Vk<rs<mn-—1.

i=(0,1,2,2,1,0) D*(@) = (1,0,1,1,0,1)
D(a@) = (1,1,0,1,1,0) DY@) = (1,1,0,1,1,0)
D?(@) = (0,1,1,0,1,1) = D(d)
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Ducct SEQUENCES

Components of N-tuples in the cycle

Theorem (2.12)

Let @ € Ay. Suppose D¥(d), D¥1(@),--- , D" () is the
(n — k)-cycle of a.
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Ducct SEQUENCES

Components of N-tuples in the cycle

Theorem (2.12)

Let @ € Ay. Suppose D¥(d), D¥1(@),--- , D" () is the

(n — k)-cycle of @. Then, the components of D¥(ad) are all equal to
either O or M for each i =k, k+1,--- ,n— 1, where

M = max DF(a).
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INTRODUCTIO! Ducct SEQUENCES SIMILAR CYCLES DIrFFy HEXAGONS

Components of N-tuples in the cycle

Theorem (2.12)

Let @ € Ay. Suppose D¥(d), D¥1(@),--- , D" () is the

(n — k)-cycle of @. Then, the components of D¥(ad) are all equal to
either O or M for each i =k, k+1,--- ,n— 1, where

M = max DF(a).

i=1(0,2,4,4,2,0) D3(d) = (2,0,2,2,0,2)
D(d) = (2,2,0,2,2,0) DY@) = (2,2,0,2,2,0)
D?(d) = (0,2,2,0,2,2) = D(d)
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Ducct SEQUENCES

The converse of Theorem 2.12 fails in general

If N+ 2, then there are @,b € Ay with D(@) = b such that

maxa=maxb= M
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Ducct SEQUENCES

The converse of Theorem 2.12 fails in general

If N+ 2, then there are @,b € Ay with D(@) = b such that
max d = max b= M

and the components of g, b aren't all equal to either 0 or M.
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Ducct SEQUENCES

The converse of Theorem 2.12 fails in general

If N+ 2, then there are @,b € Ay with D(@) = b such that
max d = max b= M

and the components of g, b aren't all equal to either 0 or M.

Let N=6, @ = (2014,0,1,1,1,1) and D(@) = b
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Ducct SEQUENCES

The converse of Theorem 2.12 fails in general

If N+ 2, then there are @,b € Ay with D(@) = b such that
max d = max b= M

and the components of g, b aren't all equal to either 0 or M.

Let N=6, @ = (2014,0,1,1,1,1) and D(@) = b
Then, b = (2014, 1,0,0,0,2013)
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Ducct SEQUENCES

The greatest common divisor of components of N-tuples
in AN

Definition (2.14)
Let @ € Ay with @ # 0.
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Ducct SEQUENCES

The greatest common divisor of components of N-tuples
in AN

Definition (2.14)

Let € Ay with 3#£0. If 4= (a1, ag, -+ ,an), then ged @ is the
number ged(ay, ag,- - , ay).
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Ducct SEQUENCES

The relation between max @ and ged a

Let @ € Ay with @+ 0 and n be a nonnegative integer. Then, we
obtain that ged @ | max D"(a).
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Ducct SEQUENCES

The relation between max @ and ged a

Let @ € Ay with @+ 0 and n be a nonnegative integer. Then, we
obtain that ged @ | max D"(a).

Example
Let ¢ = (0,2,4,4,2,0)
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Ducct SEQUENCES

The relation between max @ and ged a

Let @ € Ay with @+ 0 and n be a nonnegative integer. Then, we
obtain that ged @ | max D"(a).

Example
Let ¢ = (0,2,4,4,2,0)
= ged(a) =2
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Ducct SEQUENCES

The relation between max @ and ged a

Let @ € Ay with @+ 0 and n be a nonnegative integer. Then, we
obtain that ged @ | max D"(a).

Example

Let @ = (0,2,4,4,2,0) D*(@) = (2,0,2,2,0,2)
= ged(d) =2 DY@) = (2,2,0,2,2,0)
= D(a)

D(@) = (2,2,0,2,2,0)
D?(d) = (0,2,2,0,2,2)
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Ducct SEQUENCES

Components of N-tuples in the cycle

Corollary (2.16)

Let @ € Ay with @+# 0. Suppose D*(@), D*1(@),--- , D" (a) is
the (n — k)-cycle of a.
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Ducct SEQUENCES

Components of N-tuples in the cycle

Corollary (2.16)

Let @ € Ay with @+# 0. Suppose D*(@), D*1(@),--- , D" (a) is
the (n — k)-cycle of @. Then, the components of D'(d) are all
equal to either 0 or M for each i =k, k+1,--- ,n— 1, where M is
a multiple of ged a.
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INTRODUCTIO! Ducct SEQUENCES SIMILAR CYCLES DIFFY HEXAGONS

In Corollary 2.16, M may be any nonnegative integer

Example (2.17)
Let d =ged d, K > 1 be integers and a = (d, d, d, d, d, Kd) € Ag.
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INTRODUCTIO! Ducct SEQUENCES SIMILAR CYCLES DIFFY HEXAGONS

In Corollary 2.16, M may be any nonnegative integer

Example (2.17)

Let d =ged d, K > 1 be integers and a = (d, d, d, d, d, Kd) € Ag.

D(a) = (0,0,0,0, (K —1)d, (K —1)d)

(@) = (0,0,0, (K —1)d,0,(K—1)d)
D3(d) = (0,0, (K —1)d, (K —1)d, (K — 1)d, (K — 1)d)
DY(@) = (0, (K —1)d,0,0,0, (K — 1)d)
D*(d@) = ((K—1)d, (K —1)d,0,0, (K —1)d, (K — 1)d)
D%(@) = (0, (K —1)d,0, (K —1)d,0,0)
D'(d) = (K—1)d,(K—1)d, (K —1)d, (K — 1)d,0,0)
D?(@) = (0,0,0, (K —1)d,0, (K — 1)d) = D*(a)

M= (K—1)d
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SIMILAR CYCLES
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SIMILAR CYCLES

Similar cycles

Definition (3.1)

Let € Ay and be (ZQ)N.qSuppose that .
D¥(b), D*FL(b),--- , D" 1(b) is the (n — k)-cycle of b.
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SIMILAR CYCLES

Similar cycles

Definition (3.1)

Let € Ay and be (ZQ)N.qSuppose that .
D¥(b), D¥FL(b),-- -, D" 1(b) is the (n — k)-cycle of b. The cycle of
a is said to be similar to the cycle of b,
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SIMILAR CYCLES

Similar cycles

Definition (3.1)

Let @€ Ay and b € (Z3)". Suppose that
D¥(b), D¥FL(b),-- -, D" 1(b) is the (n — k)-cycle of b. The cycle of
a is said to be similar to the cycle of b, if 3m € N such that

D"(a) = mD*(b), where r, s are nonnegative integers with
k<s<n-—1.
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SIMILAR CYCLES

The period of similar cycles

Let @ € Ay. Then, the cycle of a is similar to the cycle of b, where
b € (Z2)N and the period of b is equal to the period of d.
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INTRODUCTIO )UCCI SEQ CES SIMILAR CYCLES DIFFY HEXAGONS

The period of similar cycles

Let @ € Ay. Then, the cycle of a is similar to the cycle of b, where
b € (Z2)N and the period of b is equal to the period of d.

Example
= (0,2,4,4,2,0) b=(0,1,0,0,1,0)
D( ) (2,2,0,2,2,0) D(b) = (1,1,0,1,1,0)
D*(@) = (0,2,2,0,2,2) D*(B) = (0,1,1,0,1,1)
D*(d) = (2,0,2,2,0,2) D¥(%) = (1,0,1,1,0,1)
DY(@) = (2,2,0,2,2,0) DAB) = (1,1,0,1,1,0)
= D(q) — D(})
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SIMILAR CYCLES

Cycles of N-tuples in Ay

When we discuss cycles of N-tuples in Ay, it is enough to cope
with N-tuples in (Z2)" according to Theorem 3.2.
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INTRODUCTIO )UC( Q CES SIMILAR CYCLES

Periods of N-tuples in Ay

Theorem (3.13)

Let € = (041,012, ,d0in) € AN, where &;; is the Kronecker delta
for all i,j€ {1,2,--- , N}.
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INTRODUCTIO )UC( Q CES SIMILAR CYCLES

Periods of N-tuples in Ay

Theorem (3.13)

Let € = (041,012, ,d0in) € AN, where &;; is the Kronecker delta
for all i,j € {1,2,--- , N}. Then, we have:
(a) If D"(é1) = D*(€,) for some nonnegative integers
T, $
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INTRODUCTIO )UCCI SEQ CES SIMILAR CYCLES DIFFY HEXAGONS

Periods of N-tuples in Ay

Theorem (3.13)

Let € = (041,012, ,d0in) € AN, where &;; is the Kronecker delta
for all i,j € {1,2,--- , N}. Then, we have:

(a) If D"(é1) = D°(é) for some nonnegative integers
r, s, then we have: D"(b) = D*(b),V b € (Zy)".
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INTRODUCTIO )UCCI SEQ CES SIMILAR CYCLES DIFFY HEXAGONS

Periods of N-tuples in Ay

Theorem (3.13)

Let € = (041,012, ,d0in) € AN, where &;; is the Kronecker delta
for all i,j € {1,2,--- , N}. Then, we have:

(a) If D"(é1) = D°(é) for some nonnegative integers
r, s, then we have: D"(b) = D*(b),V b € (Zy)".
(b) The period of €1, €, - , €x are all identical.
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INTRODUCTIO )UCCI SEQ CES SIMILAR CYCLES DI1rFrFy HEXAGONS

Periods of N-tuples in Ay

Theorem (3.13)
Let € = (041,012, ,d0in) € AN, where &;; is the Kronecker delta
for all i,j € {1,2,--- , N}. Then, we have:

(a) If D"(é1) = D°(é) for some nonnegative integers
r, s, then we have: D"(b) = D*(b),V b € (Zy)".
(b) The period of €1, €, - , €x are all identical.

(c) If @ € Ap, then the period of @ divides the period of
é.
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INTRODUCTIO )UCK Q CES SIMILAR CYCLES

Periods of N-tuples in Ay

Theorem (3.13)
Let € = (041,012, ,d0in) € AN, where &;; is the Kronecker delta
for all i,j € {1,2,--- , N}. Then, we have:
(a) If D"(é1) = D°(é) for some nonnegative integers
r, s, then we have: D"(b) = D*(b),V b € (Zy)".
(b) The period of €1, €, - , €x are all identical.

(c) If @ € Ap, then the period of @ divides the period of
€1. In particular, the maximal period of N-tuples in
An is equal to the period of ¢ .
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SIMILAR CYCLES

Cycles of 2"-tuples in Ao

Theorem (3.15)
Let r be a positive integer. Suppose that N = 2".
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SIMILAR CYCLES

Cycles of 2"-tuples in Ao

Theorem (3.15)

Let r be a positive integer. Suppose that N=2". If G € Ay, then
the cycle of a is similar to the 1-cycle of 0.
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SIMILAR CYCLES

Cycles of 2"-tuples in Ao

Theorem (3.15)

Let r be a positive integer. Suppose that N=2". If G € Ay, then
the cycle of a is similar to the 1-cycle of 0.

i=(0,1,2,0) DY(@) = (0,0,0,0)
D(a) = (1,1,2,0) D*(@) = (0,0,0,0)
D*(@) = (0,1,2,1) = D*(@)
D*@) = (1,1,1,1)
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DirFy HEXAGONS

Introduction

According to Remark 1.3, we shall concentrate on the cycles of
6-tuples in Ag in this chapter.
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The period of 6-tuples in Ag

Theorem (4.1)
The period of 6-tuples in Ag divides 6.
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The period of 6-tuples in Ag

Theorem (4.1)

The period of 6-tuples in Ag divides 6. In particular, the maximal
period of 6-tuples in Ag is equal to 6.
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The period of 6-tuples in Ag

Theorem (4.1)

The period of 6-tuples in Ag divides 6. In particular, the maximal
period of 6-tuples in Ag is equal to 6.

= (1,0,0,0,0,0) P(e) = (1,1,1,0,0,1)
= (1,0,0,0,0,1) = (0,0,1,0,1,0)
= (1,0,0,0,1,0) =(0,1,1,1,1,0)
= (1,0,0,1,1,1) = (1,0,0,0,1,0)
=(1,0,1,0,0,0) :D2(61)
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)

If b € (Z3)8, then the cycle of b is one of the followings:
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)
If b € (Z3)8, then the cycle of b is one of the followings:

(i) (1-cycle) (0,0,0,0,0,0)

(0,0,0,0,0,0)

—: a Ducci process
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)
If b € (Z3)8, then the cycle of b is one of the followings:

(i) (1-cycle) (0,0,0,0,0,0)
(0,1,0,1,0,1) (1,0,1,0,1,0)
~N S
(1,1,1,1,1,1)
|
(0,0,0,0,0,0)

Y

—: a Ducci process
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)
(ii) (3-cycle) (0,1,1,0,1,1), (1,0,1,1,0,1),(1,1,0,1,1,0)

(0,1,1,0,1,1)

(N

(1,1,0,1,1,0) (1,0,1,1,0,1)

"

—: a Ducci process




I
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)

(i) (3-cycle) (0,1,1,0,1,1),(1,0,1,1,0,1),(1,1,0,1,1,0)
(0,0,0,1,1,1)  (1,1,1,0,0,0)

=)

(0,0,1,0,0,1)

l

(0,1,1,0,1,1)

\

(1,1,0,1,1,0) (1,0,1,1,0,1)

/ N

1,0,1,1,0,0)

(

A
£
=
e
=
=
=)
=
—

(1,1,0,0,0,1) ~ (0,0,1,1,1,0) ~ (0,1,1,1,0,0) ~ (1,0,0,0,1,1)

—: a Ducci process
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)

(iii) (6-cycle) (0,1,0,0,0,1),(1,1,0,0,1,1),(0,1,0,1,0,0),
(1,1,1,1,0,0),(0,0,0,1,0,1),(0,0,1,1,1,1)

iy

(03170707071) (17170705171)

[

(07071717171) (05170717070)

(0,0,0,1,0,1) (1,1,1,1,0,0)

"—

—: a Ducci process
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)

(iii) (6-cycle) (0,1,0,0,0,1),(1,1,0,0,1,1),(0,1,0,1,0,0),
(1,1,1,1,0,0),(0,0,0,1,0,1),(0,0,1,1,1,1)

(0,1,0,0,0,0)  (1,0,1,1,1,1)  (1,0,0,1,0,1)  (0,1,1,0,1,0)

~ e ~N b
(1,1,0,0,0,0) (1,0,1,1,1,0)
N
(03170707071) (17170705171)
(1,0,1,0,0,1) /‘ (1,1,1,0,1,1)
\ !
(1,1,1,0,1,0) — (0,0,1,1,1,1) (0,1,0,1,0,0) «— (0,0,1,1,0,0)

A S
(0,1,0,1,1,0) (0,0,0,1,0,0)

(0,0,0,1,0,1) (1,1,1,1,0,0)

£\
e

,0, 1, (1,0,1,0,1,1)
N PN
(1,1,1,1,1,0)  (0,0,0,0,0,1)  (0,1,1,0,0,1)  (1,0,0,1,1,0)

—: a Ducci process
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Cycles of 6-tuples in (Zj)°

Lemma (4.2)
(iv) (6-cycle) (1,0,0,0,1,0),(1,0,0,1,1
(1,1,1,0,0,1),(0,0,1,0,1,0), (0,

)

N

(17070707 17 0) (170707 15 17 1)

[

(07171717170) (15071707070)

(0,0,1,0,1,0) (1,1,1,0,0,1)

"—

—: a Ducci process
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Lemma (4.2)

(iv) (6-cycle) (1,0,0,0,1,0),(1,0,0,1,1,1),(1,0,1,0,0,0),
(1,1,1,0,0,1), (0,0,1,0,1,0), (0,1,1,1,1,0)

(0,1,1,1,1,1)  (1,0,0,0,0,0)  (0,0,1,0,1,1)  (1,1,0,1,0,0)

(1,0,0,0,0,1) (0,1,1,1,0,1)
\‘ /

(13070707170) (17070715171)
(1,0,1,1,0,0) (1,1,0,1,1,1)

\ /

(1,1,0,1,0,1) —> (0,1,1,1,1,0) (1,0,1,0,0,0) «— (0,1,1,0,0,0)

TR T
(0,1,0,0,1,1) (0,0,1,0,0,0)

(0, ,1,0,1,0) (1,1,1,0,0,1)
‘\

=T

=
=
S
-
1_‘
8

: (0,1,0,1,1,1)
RN PN
(1,1,1,1,0,1)  (0,0,0,0,1,0)  (0,0,1,1,0,1)  (1,1,0,0,1,0)

—: a Ducci process
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Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple (a1, a2, ag, a4, a5, ag) in Ag is regarded
as written in a regular hexagon.

FEF WE-MING WANG Dirry 7ViBH2 28 A STUDY ABOUT DIFFY HEX



DirFy HEXAGONS

Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple (a1, a2, ag, a4, a5, ag) in Ag is regarded
as written in a regular hexagon.

However, regular hexagons have symmetries under rotations and
reflections,
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Ducci sequences and Diffy Hexagons

As in Remark 1.3, a 6-tuple (a1, a2, ag, a4, a5, ag) in Ag is regarded
as written in a regular hexagon.

However, regular hexagons have symmetries under rotations and
reflections, but (a1, ag, a3, a4, as, ag) does not.
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Write D = {(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25)
(36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45),
(2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)}
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Prepare for an identification on Ducci sequences

Write Dg = {(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25)

(36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45),
(2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)} which is the
permutation group corresponding to all possible rotations and
reflections of the regular hexagon.
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Prepare for an identification on Ducci sequences

Write Dg = {(1)(2)(3)(4)(5)(6), (123456), (135)(246), (14)(25)

(36), (153)(264), (165432), (16)(25)(34), (1)(4)(26)(35), (12)(36)(45),
(2)(5)(13)(46), (14)(23)(56), (3)(6)(15)(24)} which is the
permutation group corresponding to all possible rotations and
reflections of the regular hexagon.
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Prepare for an identification on Ducci sequences

Define * : Dg x Ag — Ag by

W*(alaagv"' 7a6)

I
—~
S
3
=

3
A
N
IS
3
—~
=)
=
SN—

for all m € Dg and (a1, ag,- - , ag) € Ag.
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Prepare for an identification on Ducci sequences

Define * : Dg x Ag — Ag by

W*(alaagv"' 7a6)

I
—~
S
3
=

3
A
N
IS
3
—~
=)
=
SN—

for all m € Dg and (a1, ag,- - , ag) € Ag.
Clearly, * is well-defined.
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Prepare for an identification on Ducci sequences

Define * : Dg x Ag — Ag by

W*(alaagv"' 7a6)

I
—~
S
3
=
3
A
N
IS
3
—~
=)
=
SN—

for all m € Dg and (a1, ag,- - , ag) € Ag.
Clearly, * is well-defined.

Lemma (4.4)

x is a left group action of Dg on Ag.
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An identification on Ducci sequences

For all Z, 3 € Ag, define Z= 4 by Z = 7 * 3 for some 7 € Dg.
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An identification on Ducci sequences

For all Z, 3 € Ag, define Z= 4 by Z = 7 * 3 for some 7 € Dg.
Then, = is the equivalence relation on Ag induced by Dg and
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An identification on Ducci sequences

For all Z, 3 € Ag, define Z= 4 by Z = 7 * 3 for some 7 € Dg.
Then, = is the equivalence relation on Ag induced by Dg and we
denote an equivalence class of Ag by [(a1, ag, -, ag)], where
(al, ag, -, ae) S AG.
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An identification on Ducci sequences

For all Z, 3 € Ag, define Z= 4 by Z = 7 * 3 for some 7 € Dg.
Then, = is the equivalence relation on Ag induced by Dg and we
denote an equivalence class of Ag by [(a1, ag, -, ag)], where

(al, ag, -, ae) € Ag.

From now on, we identify two 6-tuples Z, 3 in Ag, written by Z = ¥,
if and only if Z= 7.

FEF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



DirFy HEXAGONS

An identification on Ducci sequences

Remark (4.5)
In our identification, we observe that:
(a) If G,b € Ag, then @= b if and only if [d] = [b].
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An identification on Ducci sequences

Remark (4.5)
In our identification, we observe that:
(a) If G,b € Ag, then @= b if and only if [d] = [b].
(b) According to Remark 1.3, a sequence of regular

hexagons, that is, a Diffy Hexagon game, is actually
a Ducci sequence of 6-tuples in Ag.
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Diffy Hexagons whose components are consisting of {0, 1}

Lemma (4.9)

There are 13 equivalence classes of (Z2)S.
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Diffy Hexagons whose components are consisting of {0, 1}

Lemma (4.9)

There are 13 equivalence classes of (Z2)%. In fact, they are:
(0,0,0,0,0,0),(0,0,0,1,1,1),(0,0,1,0,0,1),(0,0,1,0,1,1),
(0,1,0,1,0,1),(0,1,1,0,1,1),(0,1,1,1,0,1),(0,1,1,1,1,1),
(1,0,0,0,0,0),(1,0,0,0,0,1),(1,0,0,0,1,0),(1,0,0,1,1,1),
and (1,1,1,1,1,1).
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Diffy Hexagons whose components are consisting of {0, 1}

Lemma (4.9)

There are 13 equivalence classes of (Z2)%. In fact, they are:
(0,0,0,0,0,0),(0,0,0,1,1,1),(0,0,1,0,0,1),(0,0,1,0,1,1),
(0,1,0,1,0,1),(0,1,1,0,1,1),(0,1,1,1,0,1),(0,1,1,1,1,1),
(1,0,0,0,0,0),(1,0,0,0,0,1),(1,0,0,0,1,0),(1,0,0,1,1,1),
and (1,1,1,1,1,1).
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Cycles of Diffy Hexagons whose components are consisting

of {0, 1}

Theorem (4.10)
Let b € (Z3)5. Then, the cycle of b is one of the followings:

(i) (1-cycle) (0,0,0,0,0,0)

(0,0,0,0,0,0)

—: a Ducci process
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Cycles of Diffy Hexagons whose components are consisting

of {0, 1}

Theorem (4.10)
Let b € (Z3)5. Then, the cycle of b is one of the followings:

(i) (1-cycle) (0,0,0,0,0,0)
(0,1,0,1,0,1)

|

(1,1,1,1,1,1)

|

(0,0,0,0,0,0)

—: a Ducci process
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Cycles of Diffy Hexagons whose components are consisting
of {0,1}

Theorem (4.10)

(i) (1-cycle) (0,1,1,0,1,1)

(0,1,1,0,1,1)

—: a Ducci process
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Cycles of Diffy Hexagons whose components are consisting
of {0,1}

Theorem (4.10)
(ii) (1-cycle) (0,1,1,0,1,1)
(0,0,0,1,1,1)

|

(0,0,1,0,0,1)

|

(0,1,1,0,1,1)

—: a Ducci process
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Cycles of Diffy Hexagons whose components are consisting
of {0,1}

Theorem (4.10)
(iii) (2-cycle) (0,0,1,0,1,0),(0,1,1,1,1,0)

/—\
(1,0,0,0,1,0) (1,0,0,1,1,1)

~_ _~

—: a Ducci process
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Cycles of Diffy Hexagons whose components are consisting
of {0,1}

Theorem (4.10)
(iii) (2-cycle) (0,0,1,0,1,0),(0,1,1,1,1,0)

(0,1,1,1,1,1)  (1,0,0,0,0,0) (0,1,1,1,0,1)
(0,1,1,1,0,1) (0,1,1,1,0,1)

N~ S

(1,0,0,0,1,0) (1,0,0,1,1,1)
__~

—: a Ducci process
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The period of Diffy Hexagons

Theorem (4.12)

Let é = (1,0,0,0,0,0) € Ag. If r is a positive integer, then 1 is
the period of @ for some @ € Ag if and only if r divides the period
of 61.
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THANK YOU
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APPENDIX

Proof for Lemma 2.1

Write @ = (a1, a2, - , an)
Let M= maX{ala ag, - -, (ZN}
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APPENDIX

Proof for Lemma 2.1

Write @ = (a1, ag, - - , an)
Let M = max{ay, ag,- - ,an}

= There are at most (M + 1)V different N-tuples which are
obtained by performing Ducci processes on d
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Proof for Lemma 2.1

Write @ = (a1, ag, - - , an)
Let M = max{ay, ag,- - ,an}

= There are at most (M + 1)V different N-tuples which are
obtained by performing Ducci processes on d, and hence there are
nonnegative integers n, k with n > k such that D"(@) = D¥(@) [
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Proof for Remark 2.4

Note that — M <z—y< M
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Proof for Remark 2.4

Note that —M < z— y < M, then we obtain |z— y| < M
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Proof for Lemma 2.5

Given nonnegative integers 1, s with > s
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Proof for Lemma 2.5

Given nonnegative integers 1, s with > s
If = s, there is nothing to prove
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Proof for Lemma 2.5

Proof.

Given nonnegative integers 1, s with > s
If = s, there is nothing to prove

Now, we may assume that r > s
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Proof for Lemma 2.5

Proof.

Given nonnegative integers 1, s with > s

If = s, there is nothing to prove

Now, we may assume that r > s

It suffices to show that max D**1(d@) < max D*(d):
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APPENDIX

Proof for Lemma 2.5

Proof.

Given nonnegative integers 1, s with > s

If = s, there is nothing to prove

Now, we may assume that r > s

It suffices to show that max D**1(d@) < max D*(d):

Write Ds(a) = (Il, T, ,acN) and DS'H(E) = (yl, Y2, yN),
where

y1 = |21 — 22|, , ynN—1 = |TN—1 — 2N], yn = |TN — 31|
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APPENDIX

Proof for Lemma 2.5

Proof.

Given nonnegative integers 1, s with > s

If = s, there is nothing to prove

Now, we may assume that r > s

It suffices to show that max D**1(d@) < max D*(d):

Write Ds(a) = (Il, T, ,acN) and DS'H(E) = (yl, Y2, yN),
where

y1 = |21 — 22|, , ynN—1 = |TN—1 — 2N], yn = |TN — 31|

L 0< 2,1, -, ay < max D°(d)
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Proof for Lemma 2.5

Proof.

Given nonnegative integers 1, s with > s

If = s, there is nothing to prove

Now, we may assume that r > s

It suffices to show that max D**1(d@) < max D*(d):

Write Ds(a) = (Il, T, ,acN) and DS'H(E) = (yl, Y2, yN),
where

y1 = |21 — 22|, , ynN—1 = |TN—1 — 2N], yn = |TN — 31|

L 0< 2,1, -, ay < max D°(d)
.. By Remark 2.4, y; < max D*(q) for all i=1,2,--- | N
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Proof for Lemma 2.5

Proof.

Given nonnegative integers 1, s with > s

If = s, there is nothing to prove

Now, we may assume that r > s

It suffices to show that max D**1(d@) < max D*(d):

Write Ds(a) = (Il, T, ,acN) and DS'H(E) = (yl, Y2, yN),
where

y1 = |21 — 22|, , ynN—1 = |TN—1 — 2N], yn = |TN — 31|

L 0< 2,1, -, ay < max D°(d)
.. By Remark 2.4, y; < max D*(q) for all i=1,2,--- | N
= max D*"1(@) < max D*(a) O
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Proof for Lemma 2.6

Given k<r,s<n-—1
We may assume that r < s
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)UCCI SEQUENCES

Proof for Lemma 2.6

Proof.

Given k<r,s<n-—1

We may assume that r < s
If »= s, then it is trivial
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Proof for Lemma 2.6

Proof.

Given k<r,s<n-—1

We may assume that r < s

If »= s, then it is trivial

Suppose 7 < s, then max D*(d@) < max D"(d) by Lemma 2.5
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Proof for Lemma 2.6

Proof.

Given k<r,s<n-—1

We may assume that r < s

If »= s, then it is trivial

Suppose 7 < s, then max D*(d@) < max D"(d) by Lemma 2.5
Now, look at the Ducci sequence of D*(a):

Ds(a)7 DS—H(Zi)? T ,Dn—l(a)’

By Lemma 2.5, we know that ]

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



APPENDIX

Proof for Lemma 2.6

(continued...)

max D"(d@) < max D*(d@) = max D"(a)

< max D" (@) < max D*(d)
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Proof for Lemma 2.6

(continued...)

max D"(d@) < max D*(d@) = max D"(a)

< max D" (@) < max D*(d)

Therefore, max D"(d) < max D*(q)
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Proof for Lemma 2.6

(continued...)

max D"(d@) < max D*(d@) = max D"(a)
< max D" (@) < max D*(d)

Therefore, max D"(d) < max D*(a)
So, we conclude that max D"(d) = max D*(qd) O
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Proof for Remark 2.7

Since |z — y| = M, we obtain z— y=+M
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Proof for Remark 2.7

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M
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Proof for Remark 2.7

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M
= M+y=z<M

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO ccI SEQ CES S Y (AGONS APPENDIX

Proof for Remark 2.7

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M

= M+y=2<M

— y<0
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M

= M+y=2<M

— y<0

By assumption, y > 0
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M

= M+y=2<M

— y <0

By assumption, y > 0

cy=0
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M

= M+y=2<M

— y<0

By assumption, y > 0

Sy=0

— =M
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M

Casel: z—y=M

= M+y=2<M

— y <0

By assumption, y > 0

Sy=0

—= =M

Therefore, z,y € {0, M} and at least one of them is M
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M

Casel: z—y=M

= M+y=2<M

— y <0

By assumption, y > 0

Sy=0

—= =M

Therefore, z,y € {0, M} and at least one of them is M
Case 2: z—y=-M
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M

= M+y=2<M

— y <0

By assumption, y > 0

Sy=0

—= =M

Therefore, z,y € {0, M} and at least one of them is M
Case 2: z—y=-M

= s+ M=y< M
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M
Casel: z—y=M

= M+y=2<M

— y <0

By assumption, y > 0

Sy=0

— =M

Therefore, z,y € {0, M} and at least one of them is M
Case 2: z—y=-M

= s+ M=y< M

— <0
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Proof for Remark 2.7

Proof.

Since |z — y| = M, we obtain z— y=+M

Casel: z—y=M

= M+y=2<M

— y <0

By assumption, y > 0

Sy=0

— =M

Therefore, z,y € {0, M} and at least one of them is M
Case 2: z—y=-M

= s+ M=y< M

— <0

Note that x> 0 O]
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(continued...)
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Proof for Remark 2.7

(continued...)
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Proof for Remark 2.7

(continued...)

Sor=0

— y=M

Hence, z, y € {0, M} and at least one of them is M O
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Proof for Lemma 2.8

We prove it by induction on
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Proof for Lemma 2.8

We prove it by induction on
t=1:
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Proof for Lemma 2.8

Proof.

We prove it by induction on

t=1:

Note that M = a; = ‘bl = bg’ and 0 < by, b0 < M
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Proof for Lemma 2.8

Proof.

We prove it by induction on

t=1:

Note that M = a; = ‘bl = bg’ and 0 < by, b0 < M

By Remark 2.7, by, by € {0, M} and at least one of them is M,
holds
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Proof for Lemma 2.8

Proof.

We prove it by induction on

t=1:

Note that M = a; = ‘bl = bg’ and 0 < by, b0 < M

By Remark 2.7, by, by € {0, M} and at least one of them is M,

holds
Suppose t=1,2,--- , K holds
Then, t = K+ 1:

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO ccI SEQ CES S Y (AGONS APPENDIX

Proof for Lemma 2.8

Proof.

We prove it by induction on

t=1:

Note that M = a; = ‘bl = bg’ and 0 < by, b0 < M

By Remark 2.7, by, by € {0, M} and at least one of them is M,
holds

Suppose t=1,2,--- , K holds

Then, t = K+ 1:

By assumption, we have the following four cases:

Case 1: aleand A = a3 = = A = aK+1:0

Case 2: AK+1 = M and ap = ag = Qa3 = -+ = CLKZO

Case 3: ¢y =agy1=Mandae=a3=---=ag=0

Case 4: 42 < ¢ < K such that a; = M O]

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



APPENDIX

Proof for Lemma 2.8

Case lI: y =Mand ag =a3=---=axg=ag+1 =0
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Proof for Lemma 2.8

(continued...)

Case lI: gy =Mand ag =a3=---=axg=ag+1 =0
— b2:b3:---:bK:bK+1:bK+2,since D(b):fi
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Proof for Lemma 2.8

(continued...)

Case lI: gy =Mand ag =a3=---=axg=ag+1 =0
— bz = b3 = ... = bK: bK+1 = bK+2, since D(b) =aq
'.'M:alzlbl—bQ‘ andOSbl,bggM
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Proof for Lemma 2.8

(continued...)

Case lI: gy =Mand ag =a3=---=axg=ag+1 =0

— bz = b3 = ... = bK: bK+1 = bK+2, since D(b) =aq
','M:alzlbl—bQ‘ andOSbl,bggM

.. By Remark 2.7, by, by € {0, M} and at least one of them is M
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Proof for Lemma 2.8

(continued...)

Case lI: gy =Mand ag =a3=---=axg=ag+1 =0

— by=by=---=bg = bgy1 = brys, since D(b) = @
'.'M:alzlbl—bQ‘ andOSbl,bggM

.. By Remark 2.7, by, by € {0, M} and at least one of them is M
Therefore, we obtain

b17 b27 T bK, bK+17 bK+2 S {07 M}

and at least one of them is M, holds ]
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Proof for Lemma 2.8

(continued...)

Case 2: aKH:Mand a1:a2:a3:---:aK:0
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Proof for Lemma 2.8

(continued...)

-,

Case 2: aKH:Mand a1:a2:a3:---:aK:0
— b1:bQ:---:bK:bK+1,sinceD( ):Zi
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Proof for Lemma 2.8

(continued...)

Case 2: aKH:Mand a1:a2:a3:---:aK:0

— b1:b2:---:bK:bK+1,since D(b):a
M= ag41 = |bgy1 — bryo| and 0 < bgp, bxpo < M
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Proof for Lemma 2.8

(continued...)

Case 2: AQK+1 = M and ap = a = Qa3 = -+ = aK:0

— by=by=---=bg= bK+1, since D(b) =aq

M= ag41 = |bgy1 — bryo| and 0 < bgp, bxpo < M

.. By Remark 2.7, we obtain b1, bxta € {0, M} and at least one

of them is M
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Proof for Lemma 2.8

(continued...)
Case 2: AQK+1 = M and ap = a = Qa3 = -+ = aK:0

— by=by=---=bg= bK+1, since D(g) =aq

M= ag41 = |bgy1 — bryo| and 0 < bgp, bxpo < M

.. By Remark 2.7, we obtain b1, bxta € {0, M} and at least one
of them is M

= b1, ba, -, bk, bri1, bxro € {0, M} and at least one of them

is M, holds

O

&
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Proof for Lemma 2.8

(continued...)

Case 3: oy =agr1=Mand ag=a3=---=axg =0

FEF WE-MING WANG Dirry 7V 2B A STU



INTRODUCTIO Ducct SEQUENCES S Y CAGONS APPENDIX

Proof for Lemma 2.8

(continued...)

Case 3: oy =agr1=Mand ag=a3=---=axg =0

-,

— b2:b3:'~-:bK:bK+1,Since D(b):a

=
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Proof for Lemma 2.8

(continued...)

-,

— bQ:b3:---:bK:bK+1,sinceD( ):
’.‘M:a1:|b1—bg| andogbl,bQSM

Case 3: oy =agr1=Mand ag=a3=---=axg =0
a
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Proof for Lemma 2.8

(continued...)

Case 3: oy =agr1=Mand ag=a3=---=axg =0
— b2:b3:'~-:bK:bK+1,Since D(B):a
’,‘M:a1:|b1—bg| andogbl,bQSM

.. By Remark 2.7, b1, ba € {0, M} and at least one of them is M
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Proof for Lemma 2.8

(continued...)

-,

— bh=b3=---=bg= bK+1, since D( ):

M= a1:|b1—b2| and0§ b]_,bQSM

.. By Remark 2.7, b1, ba € {0, M} and at least one of them is M
Note that M = aAK+1 = |bK+1 = bK+2| and 0 < bKJr]_, bK+2 <M

Case 3: oy =agr1=Mand ag=a3=---=axg =0
a
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Proof for Lemma 2.8

(continued...)

-,

— bh=b3=---=bg= bK+1, since D( ):

M= a1:|b1—b2| and0§ b]_,bQSM

.. By Remark 2.7, b1, ba € {0, M} and at least one of them is M
Note that M = aAK+1 = |bK+1 = bK+2| and 0 < bKJr]_, bK+2 <M
By Remark 2.7, we have bg1, bxta € {0, M} and at least one of
them is M

Case 3: oy =agr1=Mand ag=a3=---=axg =0
a

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO )UCCI SEQ CES S S DIFFY HEXAGONS APPENDIX

Proof for Lemma 2.8

(continued...)

Case 3: oy =agr1=Mand ag=a3=---=axg =0
— by = b3 = ... =bg= bK+1, since D(g) =aq

M= a1:|b1—b2| and0§ b]_,bQSM

.. By Remark 2.7, b1, ba € {0, M} and at least one of them is M
Note that M = aAK+1 = |bK+1 = bK+2| and 0 < bKJr]_, bK+2 <M
By Remark 2.7, we have bg1, bxta € {0, M} and at least one of
them is M

So, we conclude that

by, b2, -+, b, bry1, b2 € {0, M}

and at least one of them is M, holds O]
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Proof for Lemma 2.8

(continued...)
Case 4: 42 < ¢ < K such that a; = M
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Proof for Lemma 2.8

(continued...)

Case 4: 42 < ¢ < K such that a; = M
a, a0, a; € {0, M} and a; = Mwith 2 < i< K

F&EF WE-MING WANG DiFry 7R, 2#Ra A STuDY ABoUT DirFy HEX



I

TRODUCTIO )UCCI SEQ CES S Y CAGONS APPENDIX

Proof for Lemma 2.8

(continued...)

Case 4: 42 < ¢ < K such that a; = M

a, a0, a; € {0, M} and a; = Mwith 2 < i< K

.. By induction hypothesis, b1, ba, -, b;, bir1 € {0, M} and at
least one of them is M
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Proof for Lemma 2.8

(continued...)

Case 4: 42 < ¢ < K such that a; = M

a, a0, a; € {0, M} and a; = Mwith 2 < i< K

.. By induction hypothesis, b1, ba, -, b;, bir1 € {0, M} and at
least one of them is M

Note that a; = M, a;yq1, - - -, a1 € {0, M} and

9= (K+1)— (K—1) < (K+1) - (i—1)

<(K+1)—-(2-1)
=K
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Proof for Lemma 2.8

Since Ducci processes are cyclic,
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Proof for Lemma 2.8

(continued...)

Since Ducci processes are cyclic, we obtain
bi7 bi—‘rla Y bK7 bKJrh bK+2 € {07 M}

and at least one of them is M, by induction hypothesis
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Proof for Lemma 2.8

(continued...)

Since Ducci processes are cyclic, we obtain
bi7 bi—‘rla Y bK7 bKJrh bK+2 € {07 M}

and at least one of them is M, by induction hypothesis
Hence, we conclude that

bl, bg, 000 o bi, bi—&-l; 000 bK, bK+17 bK+2 € {O, M}

and at least one of them is M, holds ]

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO:! Duccl SEQUENCES S Y (AGONS APPENDIX

Proof for Lemma 2.10

We prove it by induction on i
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Proof for Lemma 2.10

We prove it by induction on i
1=0:
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Proof for Lemma 2.10

Proof.

We prove it by induction on i

1=0:

By Lemma 2.6, max D"~ (@) = max D¥(d@) = M
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Proof for Lemma 2.10

Proof.

We prove it by induction on i

t=0:

By Lemma 2.6, max D"~ (@) = max D¥(d@) = M
= there is a component of D"1(@) is M
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Proof for Lemma 2.10

Proof.

We prove it by induction on i

1=0:

By Lemma 2.6, max D"~ (@) = max D¥(d@) = M

= there is a component of D"1(@) is M

= there is one cyclic consecutive component of D"~ 1(@) which
is taken from 0

or M such that at least one of them is A, holds
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Proof for Lemma 2.10

Proof.

We prove it by induction on i

1=0:

By Lemma 2.6, max D"~ (@) = max D¥(d@) = M

= there is a component of D"1(@) is M

= there is one cyclic consecutive component of D"~ 1(@) which
is taken from 0

or M such that at least one of them is A, holds

Suppose ¢ = K holds

Then i = K+ 1:
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Proof for Lemma 2.10

Proof.

We prove it by induction on i

1=0:

By Lemma 2.6, max D"~ (@) = max D¥(d@) = M

= there is a component of D"1(@) is M

= there is one cyclic consecutive component of D"~ 1(@) which
is taken from 0

or M such that at least one of them is A, holds

Suppose ¢ = K holds

Then i = K+ 1:

We must prove that there are at least (K + 1) + 1 cyclic
consecutive components of D("~D=(K+1)(g) taken from 0 or M
such that at least one of them is M: O
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Proof for Lemma 2.10

(continued...)
Write

D= (G) = (m1,- -+, ay) and DK@ = (-, yw)
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Proof for Lemma 2.10

(continued...)
Write

D= (G) = (m1,- -+, ay) and DK@ = (-, yw)

= D(z1,22, - ,2n) = (Y1, Y2, , YN)
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Proof for Lemma 2.10

(continued...)
Write

D= (G) = (m1,- -+, ay) and DK@ = (-, yw)

= D(SCl,SCQ,"' 7$N) = (yl’y%"' 7yN)

By induction hypothesis, we know that there are at least the K+ 1
cyclic consecutive components of D("~)=X(G) are taken from 0 or
M such that at least one of them is M
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Proof for Lemma 2.10

(continued...)
Write

D= (G) = (m1,- -+, ay) and DK@ = (-, yw)

= D(SCl,SCQ,"' 7$N) = (yl’y%"' 7yN)

By induction hypothesis, we know that there are at least the K+ 1
cyclic consecutive components of D("~)=X(G) are taken from 0 or
M such that at least one of them is M

Since Ducci processes are cyclic
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Proof for Lemma 2.10

(continued...)
Write

D= (G) = (m1,- -+, ay) and DK@ = (-, yw)

= D(SCl,SCQ,"' 7$N) = (yl’y%"' 7yN)

By induction hypothesis, we know that there are at least the K+ 1
cyclic consecutive components of D("~)=X(G) are taken from 0 or
M such that at least one of them is M

Since Ducci processes are cyclic, we may assume

Y1, Y2, , YK, Yk+1 are K+ 1 cyclic consecutive components of
D(»=D=K(g) which are taken from 0 or M such that at least one
of them is M without loss of generality O
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Proof for Lemma 2.10

(continued...)

By Lemma 2.8, 1,22, - , 2k, Tk t1, T2 € {0, M} and at least
one of them is M
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Proof for Lemma 2.10

(continued...)

By Lemma 2.8, 1,22, - , 2k, Tk t1, T2 € {0, M} and at least
one of them is M

Hence, we conclude that z;, 29, - - - , Tk, Tx41, TK42 are

(K+ 1) + 1 cyclic consecutive components of D("—1—(K+1)(g)
which are taken from 0 or M such that at least one of them is M,
so i= K+ 1 holds ]

4
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Proof for Remark 2.11

Proof.

The first statement follows from the fact that Ay is a collection of
N-tuples of nonnegative integers

Now, we prove the last statement:
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Proof for Remark 2.11

Proof.

The first statement follows from the fact that Ay is a collection of
N-tuples of nonnegative integers

Now, we prove the last statement:

v i<min{n—k—1,N—-1}
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Proof for Remark 2.11

Proof.

The first statement follows from the fact that Ay is a collection of
N-tuples of nonnegative integers

Now, we prove the last statement:

v i<min{n—k—1,N—-1}

i<n—k—1
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Proof for Remark 2.11

Proof.

The first statement follows from the fact that Ay is a collection of
N-tuples of nonnegative integers

Now, we prove the last statement:

v i<min{n—k—1,N—-1}

i<n—k—1

By (a), wehave 0 <i<n—k—1
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Proof for Remark 2.11

Proof.

The first statement follows from the fact that Ay is a collection of
N-tuples of nonnegative integers

Now, we prove the last statement:

v i<min{n—k—1,N—-1}

i<n—k—1

By (a), we have 0 < i< n—k—1 and

k=(n—1)—(n—k—1)<(n—1)—1
<(n-1)-0
=n—1
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Proof for Theorem 2.12

Therefore, D("~D=%(g) is in the (n — k)-cycle
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Proof for Theorem 2.12

Proof.

Therefore, D("~D=%(g) is in the (n — k)-cycle
By Lemma 2.6, we obtain max (@) = max D*(@) = M for all
j=kk+1,--- ,n—1
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Proof for Theorem 2.12

Proof.

Therefore, D("~D=%(g) is in the (n — k)-cycle

By Lemma 2.6, we obtain max (@) = max D*(@) = M for all
j=kk+1,--- ,n—1

In particular, D"~1(@) = M
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Proof for Theorem 2.12

Proof.

Therefore, D("~D=%(g) is in the (n — k)-cycle

By Lemma 2.6, we obtain max (@) = max D*(@) = M for all
j=kk+1,--- ,n—1

In particular, D"~1(@) = M

By Lemma 2.10, we know that there are at least N cyclic
consecutive components of D("~D=(N=1)() taken from 0 or M
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Proof for Theorem 2.12

Proof.

Therefore, D("~D=%(g) is in the (n — k)-cycle

By Lemma 2.6, we obtain max (@) = max D*(@) = M for all
j=kk+1,--- ,n—1

In particular, D"~1(@) = M

By Lemma 2.10, we know that there are at least N cyclic
consecutive components of D("~D=(N=1)() taken from 0 or M
= the components of D" "(d) are all equal to either 0 or M
which follows from D"N(d) € Ay
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Proof for Theorem 2.12

Proof.

Therefore, D("~D=%(g) is in the (n — k)-cycle

By Lemma 2.6, we obtain max (@) = max D*(@) = M for all
j=kk+1,--- ,n—1

In particular, D"~1(@) = M

By Lemma 2.10, we know that there are at least N cyclic
consecutive components of D("~D=(N=1)() taken from 0 or M
= the components of D" "(d) are all equal to either 0 or M
which follows from D"N(d) € Ay

Now, look at the Ducci sequence of D" V(a):

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO )UCC QUENCES S 2 CYCLES IFFY APPENDIX

Proof for Theorem 2.12

(continued...)

D N( ) D N+1( ) Dn 1
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Proof for Theorem 2.12

(continued...)

D N( ) D N+1( ) Dn 1

(@), D*(a) = Dk()
Dk—i—l(&»)

+2(—») Dn—N— ( ),

= the components of D*(a), D**1(d),---, D" }( ) are all
equal to either 0 or M, since the components of D" ¥(a) are all
equal to 0 or M

Hence, we complete this proof O

4
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Proof for Remark 2.13

Let M > 1 be an integer
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Proof for Remark 2.13

Let M > 1 be an integer and @ = (M,0,1,---,1,1) € Ay
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Proof for Remark 2.13

Let M > 1 be an integer and a=(M,0,1,---
Choose b= D(d) € An
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Proof for Remark 2.13

Let M > 1 be an integer and @ = (M,0,1,---
D(ﬁ)GAN
= (M,1,0,---,0,M—1)

<
Il
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Proof for Remark 2.13

Let M > 1 be an integer and @ = (M,0,1,---
Choose b= D(d) € Ay

— b= (M,1,0,---,0,M—1)
Note that max @ = max b= M
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Proof for Remark 2.13

Let M > 1 be an integer and @ = (M,0,1,---,1,1) € Ay
Choose b= D(d) € Ay

— b= (M,1,0,---,0,M—1)

Note that max @ = max b = M

.. the components of d, b aren't all equal to either 0 or M O
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Proof for Lemma 2.15

Let ged a =d .
Write d = db with ged b =1
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Proof for Lemma 2.15

Proof.

Let gcda = d

Write @ = db with ged b=1

Note that d > 0 and D(@) = D(db) = dD(b)

FEF WE-MING WANG Dirry 7UB 28 A STUDY ABOUT DIFFY HEXAGONS



APPENDIX

Proof for Lemma 2.15

Proof

Let gcda = d

Write @ = db with gcdg— 1

Note that d > 0 and D(@) = D(db) = dD(b)

— D"(@) = D"(db) = dD™(b) by induction on n
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Proof for Lemma 2.15

Proof

Let gcda = d

Write @ = db with ged b=1

Note that d > 0 and D(@) = D(db) = dD(b)

— D"(@) = D"(db) = dD™(b) by induction on n

= d| D"(a)

Therefore, we know that ged @ | D" (@) O
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Proof for Corollary 2.16

It follows from Theorem 2.12 and Lemma 2.15 O \
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Proof for Lemma 2.18

It suffices to show that ged D7(@) | ged D*(a)
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Proof for Lemma 2.18

It suffices to show that ged D7(@) | ged D*(a)
Given nonnegative integers 7, s with r < s
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Proof for Lemma 2.18

Proof.

It suffices to show that ged D7(@) | ged D*(a)
Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s
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Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)

Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):
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Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)

Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):
Write D"(@) = (21 d, 224, - - - , xyd) such that
ged(xy, 22, -+, xy) = 1, where ged D"(a) = d
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INTRODUCTIO!

Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)

Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):
Write D"(@) = (21 d, 224, - - - , xyd) such that
ged(xy, 22, -+, xy) = 1, where ged D"(a) = d

= d> 0, since D"(a) € Ay
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Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)

Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):

Write D"(@) = (21 d, 224, - - - , xyd) such that

ged(xy, 22, -+, xy) = 1, where ged D"(a) = d

= d> 0, since D"(a) € Ay

= DY(@) = (|z — m|d,--- , |zv_1 — zn]|d, |25 — 21|d)
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INTRODUCTIO!

Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)

Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):

Write D"(@) = (21 d, 224, - - - , xyd) such that

ged(xy, 22, -+, xy) = 1, where ged D"(a) = d

= d> 0, since D"(a) € Ay

= DY(@) = (|z — m|d,--- , |zv_1 — zn]|d, |25 — 21|d)
Let ged( |21 — a0, -, |an—1 — zn], |28 — 21| ) = d*
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INTRODUCTIO!

Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)

Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):
Write D"(@) = (21 d, 224, - - - , xyd) such that
ged(xy, 22, -+, xy) = 1, where ged D"(a) = d

= d> 0, since D"(a) € Ay

= DY(@) = (|z — m|d,--- , |zv_1 — zn]|d, |25 — 21|d)
Let ged( |21 — a0, -, |an—1 — zn], |28 — 21| ) = d*
= ged D"M(@) = d* - d = d* - ged D"(Q)
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INTRODUCTIO!

Proof for Lemma 2.18

Proof.

It suffices to show that ged D"(a) | ged D*(a)
Given nonnegative integers 7, s with r < s

If = s, there is nothing to prove

Now, we may assume that r < s

It is reduced to prove that gcd D"(@) | ged D"™1(d):
Write D"(@) = (21 d, 224, - - - , xyd) such that
ged(xy, 22, -+, xy) = 1, where ged D"(a) = d

= d> 0, since D"(a) € Ay

= DH_l( )—(|£L'1—Sl72|d, ,|$N_1—$N|d,|l'N—£L'1‘d)

Let ged( |21 — a0, -, |an—1 — zn], |28 — 21| ) = d*

= ged D'M(@) = d* - d = d* - ged D7(q)

. ged D7(@) | ged D™H1(4) O
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Proof for Lemma 2.19

Given k<r,s<n-—1
We may assume that r < s
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)UCCI SEQUENCES

Proof for Lemma 2.19

Proof.

Given k<r,s<n-—1

We may assume that r < s
If »= s, then it is trivial
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Proof for Lemma 2.19

Proof.

Given k<r,s<n-—1

We may assume that r < s

If »= s, then it is trivial

Suppose 7 < s, then ged D"(@) < ged D*(a) by Lemma 2.18
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Proof for Lemma 2.19

Proof.

Given k<r,s<n-—1

We may assume that r < s

If »= s, then it is trivial

Suppose 7 < s, then ged D"(@) < ged D*(a) by Lemma 2.18
Now, look at the Ducci sequence of D*(a):

Ds(a)7 DS—H(Zi)? T ,Dn—l(a)’
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Proof for Lemma 2.19

Proof.

Given k<r,s<n-—1

We may assume that r < s

If »= s, then it is trivial

Suppose 7 < s, then ged D"(@) < ged D*(a) by Lemma 2.18
Now, look at the Ducci sequence of D*(a):

Ds(a)) Ds+1(a)? e ,Dn—l(a)’
D™(@) = D*(@), D" (@), --- , D"(d)

By Lemma 2.18, we know that ]
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Proof for Lemma 2.19

(continued...)

ged D(@) < ged DF(@) = ged D(@) < ged DFFY(d) < ged D(d)
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Proof for Lemma 2.19

(continued...)

ged D(@) < ged DF(@) = ged D(@) < ged DFFY(d) < ged D(d)

Therefore, ged D*(d) < ged D"(a)
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Proof for Lemma 2.19

(continued...)

ged D(@) < ged DF(@) = ged D(@) < ged DFFY(d) < ged D(d)

Therefore, ged D*(a) < ged D'(a)
So, we conclude that ged D"(d) = ged D’(a) O
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Proof for Theorem 3.2

By Lemma 2.1, we may assume that the period of @ is n — k and

D), D**1(a),---, D" }(@)

is the (n — k)-cycle of @

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO )UCK Q CES S Y \GONS APPENDIX

Proof for Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of @ is n — k and
DX@), D (@), -, D" (@)

is the (n — k)-cycle of @
Let Dk(a:> = (‘Tla $2, o 7xN>
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Proof for Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of @ is n — k and

D), D**1(a),---, D" }(@)

is the (n — k)-cycle of @
Let Dk(6> = (1;1, T, ,:EN>
By Theorem 2.12, z;, 1y, - - - , zy € {0, M}, where M = max D¥(d)
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Proof for Theorem 3.2

Proof.

By Lemma 2.1, we may assume that the period of @ is n — k and

D), D**1(a),---, D" }(@)

is the (n — k)-cycle of @

Let Dk(6> = (1;1, T, ,:EN>

By Theorem 2.12, z;, 1y, - - - , zy € {0, M}, where M = max D¥(d)
Since D*(@) € Ay, we know that M is a nonnegative integer

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO )UCCI SEQ CES S Y (AGONS APPENDIX

Proof for Theorem 3.2

Proof.
By Lemma 2.1, we may assume that the period of @ is n — k and

D), D**1(a),---, D" }(@)

is the (n — k)-cycle of @

Let Dk(6> = (1;1, T, ,:EN>

By Theorem 2.12, z;, 1y, - - - , zy € {0, M}, where M = max D¥(d)
Since D*(@) € Ay, we know that M is a nonnegative integer

—> We have the following two cases:

Case 1: M =0

Case 2: M >0 Ol
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Proof for Theorem 3.2

(continued...)
Case 1: M =0
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Proof for Theorem 3.2

(continued...)

Case 1: M=0
— Dk(a’) = (0707 70) € (Z2)N
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Proof for Theorem 3.2

(continued...)

Case1l: M=0

= Dk(a’) = (0707 70) € (Z2)N
—

DM(@) = D(D*@)) = D(0,0,---,0) = (0,0,---,0) = D¥a)
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Proof for Theorem 3.2

(continued...)

Case1l: M=0

= Dk(a’) = (0707 70) € (Z2)N
—

Dk+1(_’) = D(Dk(_’)) ( NUREE 70) - (0707 70) - Dk(a)
— n— 1<k, since @, D(q),---,D¥a),---, D" (@) are all
distinct
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Proof for Theorem 3.2

(continued...)

Case1l: M=0

= Dk(a’) = (0707 70) € (Z2)N
—

Dk+1(_’) - D(Dk(_’)) ( NI 70) - (0707 70) - Dk(a)
— n— 1<k, since @, D(q),---,D¥a),---, D" (@) are all
distinct

" the period of dis n— k
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Proof for Theorem 3.2

(continued...)

Case 1: M=0
— Dk(a’) = (0707 70) € (Z2)N
-

Dk+1(q) = D(Dk(q)) ( USRS 70) = (0707"' 70) = Dk(a)
— n— 1<k, since @, D(q),---,D¥a),---, D" (@) are all

distinct
- the period of @ is n — k
k<n-1
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Proof for Theorem 3.2

(continued...)

Case 1: M=0

= D¥a) = (0,0,

_—

Dk+1(q) - D(Dk(q)) ( NUREE

= n— 1<k since a, D(q), - --

distinct

" the period of dis n— k
k<n-1

Therefore, we have n— 1 =&

,0) € (Z)"

,0) = (0,0, -
,Dk(ﬁ),-"

DIFFY HEXAGONS APPENDIX

,0) = D(a)
, D"1(@) are all
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Proof for Theorem 3.2

(continued...)

Case 1: M =0

= D¥a@) = (0,0,---,0) € (Zo)V

_—

Dk+1(q) = D(Dk(q)) ( 0, 0) (0707 +-,0) = Dk(a)
= n—1<k since d ,D(Zi), D¥@),---, D" () are all
distinct

" the period of dis n— k

k<n-1

Therefore, we have n— 1 =&
So, the period of disn— k=1
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Proof for Theorem 3.2

(continued...)

Case 1: M=0
— Dk(a’) = (0707 70) € (Z2)N
-

Dk+1(q) = D(Dk(q)) ( USRS 70) = (0707"' 70) = Dk(a)
— n— 1<k, since @, D(q),---,D¥a),---, D" (@) are all

distinct
- the period of @ is n — k
k<n-1

Therefore, we have n— 1 =&
So, the Beriod ofdisn—k=1
Choose b =0 € (Z2)V
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Proof for Theorem 3.2

(continued...)

Case 1: M =0

= D¥a@) = (0,0,---,0) € (Zo)V

_—

Dk+1(q) = D(Dk(q)) ( 0, 0) (0707 +-,0) = Dk(a)
= n—1<k since d ,D(Zi), D¥@),---, D" () are all
distinct

" the period of dis n— k

k<n-1

Therefore, we have n— 1 =&
So, the period of disn— k=1
Choose b= 0 € (Zy)"

— D(b) = D(0,0,---,0) = (0,0, ,0) = b= D°(b)
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Proof for Theorem 3.2

(continued...)

=> the period of bis (1 —0) =1 and the l1-cycle of b is
D°(b) =0
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Proof for Theorem 3.2

(continued...)

=> the period of bis (1 —0) =1 and the l1-cycle of b is
D°(b) =0 B
Therefore, the period of @ is equal to the period of b

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO APPENDIX

Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b
Note that DF(d@) = 0 = D°(b)
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Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b
Note that DF(d@) = 0 = D°(b)

— the cycle of d is similar to the cycle of b

Hence, we are done
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Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b
Note that DF(d@) = 0 = D°(b)

— the cycle of d is similar to the cycle of b

Hence, we are done

Case 2: M >0
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Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b
Note that DF(d@) = 0 = D°(b)

— the cycle of d is similar to the cycle of b

Hence, we are done

Case 2: M >0

— MeN
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Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b
Note that DF(d@) = 0 = D°(b)

— the cycle of d is similar to the cycle of b

Hence, we are done

Case 2: M >0

— MeN

Write D*(@) = (z1, 20, -, zn) = M(y1, 42, - , yn), where
Y1, Y2, -, yn are taken from 0 or 1
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Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b
Note that DF(d@) = 0 = D°(b)

— the cycle of d is similar to the cycle of b

Hence, we are done

Case 2: M >0

— MeN

Write D*(@) = (z1, 20, -, zn) = M(y1, 42, - , yn), where
Y1, Y2, YN are taken from 0 or 1

Choose b= (y1, %2, ,yn) € (Zo)N
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Proof for Theorem 3.2

(continued...)

— the period of bis (1 —0) = 1 and the 1-cycle of & is
D°(B) =0

Therefore, the period of d is equal to the period of b

Note that DF(d@) = 0 = D°(b)

— the cycle of d is similar to the cycle of b

Hence, we are done

Case 2: M >0

— MeN

Write D*(@) = (z1, 20, -, zn) = M(y1, 42, - , yn), where
Y1, Y2, YN are taken from 0 or 1

Choose b= (y1,%2," "+ ,yN) € (Zo)N

= DK(d@) = Mb O
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(continued...)

— DMY(@) = D(D*a)) = D(Mb) = MD(b)
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Proof for Theorem 3.2
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Proof for Theorem 3.2
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Proof for Theorem 3.2

— D(b)=b= D"k
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Proof for Theorem 3.2

By assumption,
D*(@) = Mb, D1 (@) = MD(b),--- , D" (@) = D" *~1(b) are all
distinct
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= '(b), o
In particular, b= DM@) = D"(G) = MD"*(D)
— D(b)=b= D"k
By assumption,
DH(@) = M, D1(@) = MD(F). -, D1 (@) = D"+ (F) are al
distinct

—, -,

= D°(b) = b, D(b), -

APPENDIX

DIFFY HEXAGONS

, D" F=1(b) are all distinct
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In partlcular b=1D

— D(b)=b=D"H 4

By assumption,

DF(@) = Mb, D"1(3) = MD(b), - -
distinct

= DO(b) = b, D(b),-- , D" 1(b

Therefore, the period of b is (n — )
(n— k)-cycle of bis D°(b) = b, D(b), -

APPENDIX

DIFFY HEXAGONS

-,

, D" 1(@) = D" 1(b) are all
) are all distinct
0 =mn— k and the
., D" k— l(b)
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DIFFY 7UER2#EEt A STUDY ABOUT DIFFY HEXAGONS



| RODUCTIO )UCCI SEQ CES S 2 Gy« S DIFFY HEXAGONS APPENDIX

In partlcular b=1D
— D) =b=

By assumption,

DF(@) = Mb, D"1(@) = MD(b),- -, D" (@) = D"+ 1(b) are all
distinct

— DO(b) = b, D(b),--- , D" *1(b) are all distinct

Therefore, the period of b is (n— k) — 0 = n— k and the

(n— k)-cycle of bis D°(B) = b, D(b), - -- , D" *=1(B)

So, the period of d is equal to the period of b
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Proof for Theorem 3.2

(continued...)

- DK(@) = Mb = MD°(b)

FEF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



APPENDIX

Proof for Theorem 3.2

(continued...)

- D*(@) = Mb = MD"(b)
.. the cycle of @ is similar to the cycle of b
Hence, we complete this proof []
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Proof for Lemma 3.4

Note that D(a®) = (|a1 — agl,|az — asl,--- , |ay — a1]) = D(d)
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Proof for Lemma 3.4

Proof.

Note that D(a?) = (Ja1 — aa|,|az — a3, - -+, |ay — a1]) = D(@)
Since the cycle of @ is similar to the cycle of b, 3m € N such that

-,

Dr(@) = mD*(b),

where 7, s are nonnegative integers with £k < s<n—1
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Proof for Lemma 3.4

Proof.
Note that D(a?) = (Ja1 — aa|,|az — a3, - -+, |ay — a1]) = D(@)
Since the cycle of @ is similar to the cycle of b, 3m € N such that

Dr(@) = mD*(b),

where 7, s are nonnegative integers with £k < s<n—1
Then, we have:

DT—H((;C) _ DT(D(

= D"(D(

—_ DT—i—l(

)
)

&L =

I
=
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Proof for Lemma 3.4

=,

— D'tl(af) = mD*+1(b) which completes this proof O
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Proof for Remark 3.5

If k< s< n—1, then it is trivial
Now, we may assume that s =n — 1:

FEF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



APPENDIX

Proof for Remark 3.5

If k< s< n—1, then it is trivial
Now, we may assume that s =n — 1:
— s+1=n
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Proof for Remark 3.5

If k< s< n—1, then it is trivial
Now, we may assume that s =n — 1:

— s+1=mn

— DsHL(B) = D™(b) = D*(b) is in the cycle of b O
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
= Jk < r<n—1such that a¢ = D"(q)
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
— Jk< r< n—1such that a¢ = D"(d)
= D(@) = D(a®) = D(D"(d)) = D"+(d)
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
— Jk< r< n—1such that a¢ = D"(d)
= D(@) = D(a®) = D(D'"(d)) = D"+(d)
= n—1<r, since D°(d@) = @, D(a@),--,
D¥a@),---, D"(d), -, D" (@) are all distinct
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
— Jk< r< n—1such that a¢ = D"(d)
— D(d) = D(a*) = D(D"(d)) = D"+1(d)
= n—1<r, since D°(d@) = @, D(a@),--,
D¥a@),---, D"(d), -, D" (@) are all distinct
Therefore, r=n—1

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO ccI SEQ CES S Y (AGONS APPENDIX

Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
— Jk< r< n—1such that a¢ = D"(d)
= D(@) = D(a®) = D(D'"(d)) = D"+(d)
= n—1<r, since D°(d@) = @, D(a@),--,
D¥a@),---, D"(d), -, D" (@) are all distinct
Therefore, r=n—1
— n=r+1
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Proof for Lemma 3.6

Note that D(a?) = (Ja1 — azl, |az — asl, -+ ,|any — a1]) = D(a)

“=" Suppose the condition holds
— Jk< r< n—1such that a¢ = D"(d)
= D(@) = D(a®) = D(D'"(d)) = D"+(d)
= n—1<r, since D°(d@) = @, D(a@),--,
D¥a@),---, D"(d), -, D" (@) are all distinct
Therefore, r=n—1
— n=r+1
Then, we have:
@) = D"(@) = D@ = D(@) = D@ (¥
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Proof for Lemma 3.6

(continued...)

=" Claim: k=0

If not, suppose k> 1
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Proof for Lemma 3.6

(continued...)

“=" Claim: k=0
Proof.

If not, suppose k> 1
By assumption, D°(@) = @, D(d), - -- , D*~1(a),
D¥@),--- , D" (@) are all distinct
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Proof for Lemma 3.6

(continued...)
‘=" Claim: k=0
Proof.

If not, suppose k> 1

By assumption, D°(@) = @, D(d), - -- , D*~1(a),
D¥@),--- , D" (@) are all distinct

= n—1<k—1, by (x)
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Proof for Lemma 3.6

(continued...)

“=" Claim: k=0
Proof.

If not, suppose k> 1

By assumption, D°(@) = @, D(d), - -- , D*~1(a),

D¥@),--- , D" (@) are all distinct

= n—1<k—1, by (x)

— n < k which is a contradiction to n > k O
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Proof for Lemma 3.6

(continued...)
‘=" Claim: k=0
Proof.

If not, suppose k> 1

By assumption, D°(@) = @, D(d), - -- , D*~1(a),

D¥@),--- , D" (@) are all distinct

= n—1<k—1, by (x)

— n < k which is a contradiction to n > k O

—

By Claim and (*), we obtain @ = D°(d@) = D(a¢)
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Proof for Lemma 3.6

(continued...)

“=" Claim: k=0
Proof.

If not, suppose k> 1

By assumption, D°(@) = @, D(d), - -- , D*~1(a),

D¥@),--- , D" (@) are all distinct

= n—1<k—1, by (x)

— n < k which is a contradiction to n > k O

—

By Claim and (*), we obtain @ = D°(d@) = D(a¢)
— VlgigN,ai:M—ai
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Proof for Lemma 3.6

(continued...)
‘=" Claim: k=0
Proof.

If not, suppose k> 1

By assumption, D°(@) = @, D(d), - -- , D*~1(a),

D¥@),--- , D" (@) are all distinct

= n—1<k—1, by (x)

— n < k which is a contradiction to n > k O

—

By Claim and (*), we obtain @ = D°(d@) = D(a¢)
— VlgigN,ai:M—ai
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Proof for Lemma 3.6
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Proof for Lemma 3.6
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Proof for Lemma 3.6

M
=" — M:maXZi:E
— M=0
'_'Ogal,GQ,"-,aNSM:O
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Proof for Lemma 3.6

M
=" = M:maXZi:E
= M=0
'_'Ogal,GQ,"-,aNSM:O
.'.a1:a2:"':aN:O
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Proof for Lemma 3.6

(continued...)

M
=" —= M=maxad= 5

— M=0

0<a1,a2, ,aNSMZO
LG = ag = =ay=0
— 3=0
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“<" Suppose @ =0
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(continued...)

"'=" — M=maxd= —
— M=0
0< a,a,- ,an<M=0
Lap=a=---=any=0
— 3=0

“<" Suppose @ =0
— ] = G = =ay=0

APPENDIX
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(continued...)

M
=" = M:max&'ZE

— M=0
0<a1,a2, ,aNiMZO
LG = ag = =ay=0
— 3=0

“<" Suppose @ =0
— ] = G = =ay=0
— M=0
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Proof for Lemma 3.6

(continued...)

M
=" —= M=maxad= 5
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INTRODUCTIO!

(continued...)
=" = M:maXZi:E
— M=0
0 < ayq, ag, ,an < M=0
CL.a1 = ag = =ay=0
— i=0
“<" Suppose @ =0
— ] = G = =ay=0
= M=0
= a¢=(0,0,---,0)
Note that
D(@) = D(0,0,---,0) = (0,0,---,0) =d= D@
]

DIFrY 7UER2#EEt A STUDY ABOUT DIFFY HEXAGONS
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Proof for Lemma 3.6

(continued...)

“«<" = the period of @is (1-0)=1
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Proof for Lemma 3.6

(continued...)

"«<" = the period of @is (1 —0) =1 and the l-cycle
of @ is
D°(@) = (0,0,---,0) = at

Hence, we complete this proof
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Proof for Lemma 3.7

Write T = (mla‘%'?a"' 7xN)7z_j: (y17y27' o 7yN) € AN
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Proof for Lemma 3.7

Write 7 = (1’1,1’2,”- ,xN),g‘j: (yl,yQ,--- ,yN) € Ay

()

T(ci+ %) = T(exy + y1, cm2 + Y2, -, CIN + YN)
(coo + 32, -+, can + yn, co1 + Y1)
c(m, -, oN, 21) + (Y2, YN Y1)
= ¢T(Z) + T(¥)
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Proof for Lemma 3.7

Write 7 = (1’1,1’2,”- ,xN),g‘j: (yl,yQ,--- ,yN) € Ay

()

T(ci+ %) = T(exy + y1, cm2 + Y2, -, CIN + YN)
(coo + 32, -+, can + yn, co1 + Y1)
c(m, -, oN, 21) + (Y2, YN Y1)
= ¢T(Z) + T(¥)

Given (al,ag,--- ,aN) € Ay
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Proof for Lemma 3.7

(continued...)
(b) Note that

Do T(ay, ag,- - ,an) = D(T(a1, a2, , an))
= D(ag, - ,an, a1)
= (lazg —a3l, -+ ,|an — a1,
a1 — az])

and

To D(alaa’Qv"' aaN) - T(D(al)an"' aaN))
= T(lax — az|,--- , lan—1—

anl|,|an — a1])
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Proof for Lemma 3.7

(continued...)

(b)

= (lag — a3|,--- , |ay — a1],|a1 — a2])
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Proof for Lemma 3.7

(continued...)

(b)

= (lag — a3|,--- , |ay — a1],|a1 — a2])

= DOT(a17a27"' 7aN): TOD(a17a2"" ,CLN)
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Proof for Lemma 3.7

(continued...)

(b)

= (lag — a3|,--- , |ay — a1],|a1 — a2])

= Do T(a1,a2,--- ,any) = To D(a1,az,--- , an)
S.DoT=ToD

Ol

<

FEF WE-MING WANG Dirry 7UB 28 A STUDY ABOUT DIFFY HEXAGONS



APPENDIX

Proof for Remark 3.8

Given x, y € Zs
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Proof for Remark 3.8

Given x, y € Zs
— 2y=0
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Proof for Remark 3.8

Given x, y € Zs
— 2y=0
— r—y=z—y+2y=x+y
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Proof for Remark 3.8

Given z,y € Zo

— 2y=0

= I—y=r—y+2y=z+y
= |z—yl=lz+y
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Proof for Remark 3.8

Given x, y € Zs

— 2y=0

— r—y=z—y+2y=x+y

= |z—y|=z+y

= |z—y|=z+y, since z,y € Zy O
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Proof for Remark 3.9

“=" It is trivial
"<" Suppose the condition holds
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INTRODUCTIO!

Proof for Remark 3.9

“=" It is trivial
“«<" Suppose the condition holds
Given 7,7 € (Z2)", and ¢ € Zy
We must show that Z(cZ+ 3) = cZ(Z) + Z(¥):
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Proof for Remark 3.9

“=" It is trivial
“«<" Suppose the condition holds
Given 7,7 € (Z2)", and ¢ € Zy
We must show that .Z(cZ+ 9) = c.Z(Z) + L (¥):
If ¢ =1, then there is nothing to prove
Now, we may assume that ¢ = 0:
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Proof for Remark 3.9

“=" It is trivial

“«<" Suppose the condition holds
Given 7,7 € (Z2)", and ¢ € Zy
We must show that Z(cZ+ 3) = cZ(Z) + Z(¥):
If ¢ =1, then there is nothing to prove

Now, we may assume that ¢ = 0:
= ZL(ci+y) =Z20+7y) =2V
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Proof for Remark 3.9

“=" It is trivial

“«<" Suppose the condition holds
Given 7,7 € (Z2)", and ¢ € Zy
We must show that .Z(cZ+ 9) = c.Z(Z) + L (¥):
If ¢ =1, then there is nothing to prove
Now, we may assume that ¢ = 0:
— Z(cE+7) =2(0+7) = (7 and
L@+ 2LG) =0+ 2) = 2()
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Proof for Remark 3.9

“=" It is trivial
“«<" Suppose the condition holds
Given 7,7 € (Z2)", and ¢ € Zy
We must show that .Z(cZ+ 9) = c.Z(Z) + L (¥):
If ¢ =1, then there is nothing to prove
Now, we may assume that ¢ = 0:
— Z(cE+7) =2(0+7) = (7 and
cZ(7)+ 2 () =0+ Z2(H) = Z(¥)
S+ 1Y) = cZ(2) + Z(Y)
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Proof for Lemma 3.10

We prove it by induction on i
1= 0:
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Proof for Lemma 3.10

Proof.

We prove it by induction on i

1= 0:

9 = 7 is a linear transformation, holds
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Proof for Lemma 3.10

Proof.

We prove it by induction on i

1=0:

9 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1;
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Proof for Lemma 3.10

Proof.

We prove it by induction on i

1=0:

9 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1;

By Remark 3.9, it suffices to show that:
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Proof for Lemma 3.10

Proof.

We prove it by induction on i

1=0:

9 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1;

By Remark 3.9, it suffices to show that:

TE@+§) = 7@ + 7@V G € (Z2)"
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Proof for Lemma 3.10

Proof.

We prove it by induction on i

1=0:

9 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1;

By Remark 3.9, it suffices to show that:

T @+ = 75 @) + TG, VT G € (22)"

Given Z = (21,72, - ,an), 5= (y1, %2, , yn) € (Z2)V O
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(continued...)

TE 34 5) = TK(
T T
T
Tk

T(Z+ 7))
(1 +y1, 22+ ¥, ,ZN+ YN))
T+ Y2, L, IN+ YN, 1+ Y1)

(an T axNyxl) + gK(y% T ayN)i by
induction hypothesis

= 31{(9("1}17 T2, 7$N)) + ﬂK(ﬂ(yh Y2, yN))

= 9K+1(a:1,a;2, < TN) F <7K+1(y1, Y2, YN)

By induction, we complete this proof O
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Proof for Lemma 3.11

We prove it by induction on i
1=0:
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Proof for Lemma 3.11

Proof.

We prove it by induction on i

1=0:

29 = 7 is a linear transformation, holds

FEF WE-MING W Dirry 7UGBR 2 S



APPENDIX

Proof for Lemma 3.11

Proof.

We prove it by induction on i

1=0:

29 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1:
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Proof for Lemma 3.11

Proof.

We prove it by induction on i

1=0:

29 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1:

By Remark 3.9, it suffices to show that:

7" (F+7) = 27D + 9N (), VE T € (Z)"
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Proof for Lemma 3.11

Proof.

We prove it by induction on i

1=0:

29 = 7 is a linear transformation, holds
Suppose ¢ = K holds

Then, 1= K+ 1:

By Remark 3.9, it suffices to show that:

7" (F+7) = 27D + 9N (), VE T € (Z)"

Given 7 = (331,332,' o 7$N)a y: (yb Y2, 7Z/N) € (ZQ)N O
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Proof for Lemma 3.11

(continued...)

2K @+ = 252G+ )
= 9K D+ yi, 2+ yo, -, an + yN))
=25(|(;1 + 1) — (@ + )|, (vt + yn-1)

= (av + yn)|, [(@v + yn) — (z1 + 9))
=2%((m+ )+ (@2 + 1), , (zv-1 + yn-1)

+ (zv + yn), (an + yn) + (21 + 31) ), by Remark 3.8
=2"((m+m) + (p + 1), -, (=1 + 2N)

+ (yn—1 + yn), (on + 21) + (yn + 11))
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Proof for Lemma 3.11

(continued...)

= PK(zm + 12, yan_1 F v, a4+ 3) + DK + o,
YN—1 + YN, YN + 1), by induction hypothesis
= 2%(|m — ml,- -, |anv—1 — 2w, |aw — @] )+
251y — w2l 5 lyv—1 — ynl, lynv — v1]), by Remark 3.8
= 2%(D(n1, 2, ,2n) + P2 (D (1, 10, uw)
= P a1, 29, 2n) + 25V Dy, o, 5 yw)
= 7@ + 27 ()

By induction, we complete this proof O
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Proof for Lemma 3.12

We prove it by induction on i:
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Proof for Lemma 3.12

We prove it by induction on i:
1= 0: It is trivial
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Proof for Lemma 3.12

Proof.

We prove it by induction on i:
7= 0: It is trivial

Suppose ¢ = K holds

Then, 1= K+ 1:
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Proof for Lemma 3.12

Proof.

We prove it by induction on i:
7= 0: It is trivial

Suppose ¢ = K holds

Then, 1= K+ 1:

D(rfs)(KJrl)(Dt(a)) _ Drfs(D(rfs)K(Dt(d»)))
= D"*(D'(@)), by induction hypothesis
— Dr—s+t(6)
= D'"5(D"(@)), since s < t
= D'7(D*(a@))
= D(@), holds

By induction, we complete this proof O
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Proof for Theorem 3.13

Note that {&, €, -- , €y} is a basis of (Z3)" over Zy
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Proof for Theorem 3.13

Note that {&, €, -- , €y} is a basis of (Z3)" over Zy
(a) Claim: D"(€;) = D*(¢;) for each i=1,2,--- | N

Given 7€ Nwith 1 < i< N

N
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Proof for Theorem 3.13

Note that {&, €, -- , €y} is a basis of (Z3)" over Zy

(a) Claim: D"(€;) = D*(¢;) for each i=1,2,--- | N

Proof.

Given 7€ Nwith 1 < i< N

If =1, then there is nothing to prove
Now, we may assume that 2 < i< N

N
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Proof for Theorem 3.13

Note that {&, €, -- , €y} is a basis of (Z3)" over Zy

(a) Claim: D"(€;) = D*(¢;) for each i=1,2,--- | N

Proof.
Given 7€ Nwith 1 < i< N
If =1, then there is nothing to prove

Now, we may assume that 2 < i< N
Note that & = TN=i1(%)) O

N
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Proof for Theorem 3.13

(continued...)
(a) Claim: D"(é;) = D%(¢é;) for each i=1,2,--- /N

(continued...)

D'(&) = D(TV-*1(3)
= T (&

)), by Lemma 3.7(b)
= TN_Z+1(DS< 1)
)

)
)
)
)

D*(TV""1(&)), by Lemma 3.7(b)
= D*(&)
. D"(é;) = D*(€;) for each i=1,2,--- | N 0
[]
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Proof for Theorem 3.13

(a) Given b € (Zy)V
Finally, we must show that D"(b) = D*(b):

-,
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Proof for Theorem 3.13

(a) Given b € (Zy)V
Finally, we must show that D"(b) = D*(b):
+{@,€,---,€en} is a basis of (Z)N over Zs

-,
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Proof for Theorem 3.13

(a) Given b € (Zy)V
Finally, we must show that D"(b) = D*(b):
+{@,€,---,€en} is a basis of (Z)N over Zs
c.dei, e, -+, cn € Zsg such that

b= 18 + cop + - + cyéy
Then, we have:
D'(b) = 27(b)
= @r(clgl + o€+ -+ CNE‘N)
=c12"(€) + 2"(&) + -+ cnv?"(en),
by Lemma 3.11
= ClDr(El) + CzDr(gg) —+ -+ CNDT(EN)
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Proof for Theorem 3.13

(continued...)

(a)

= D"(€1) + c2D"(é) + -+ - + enD"(€n)
= D*(€1) + o D°(é) + - - - + enD*(én),
by Claim
= 2°(é1) + c22°(é) + - - + ecnP°(en)
= P2°(c1€1 + c2é2 + -+ - + cy€n), by Lemma 3.11
= 7°(b)
— ()
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Proof for Theorem 3.13

(continued...)

(b) Given i€ Nwith2 < i< N
It suffices to show that the period of €; is equal to
the period of €;:
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Proof for Theorem 3.13

(continued...)

(b) Given i€ Nwith2 < i< N
It suffices to show that the period of €; is equal to
the period of €;:
By Lemma 2.1, we may assume that the period of
61 =n—k
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Proof for Theorem 3.13

(continued...)

(b) Given i€ Nwith2 < i< N
It suffices to show that the period of €; is equal to
the period of €;:
By Lemma 2.1, we may assume that the period of
61 =n—k
— Do(é“l) = 51, D(él), D2(§1), o0 o anl(é»l) are
all distinct
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Proof for Theorem 3.13

(continued...)

(b) Given i€ Nwith2 < i< N
It suffices to show that the period of €; is equal to
the period of €;:
By Lemma 2.1, we may assume that the period of
61 =n—k
— Do(é“l) = 51, D(él), DZ(_»l), o0 o anl(é»l) are
all distinct and D"(¢;) = D*(&,)

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO CCI SEQ CES ) * CYCLES Y CAGONS APPENDIX

Proof for Theorem 3.13

(continued...)

(b) Given i€ Nwith2 < i< N
It suffices to show that the period of €; is equal to
the period of €;:
By Lemma 2.1, we may assume that the period of
61 =n—k
— Do(el) = 61, ( ),DZ(_&) ’anl(gl) are
all distinct and D"(¢;) = D*(&,)

By (a), we know that D"(&;) = D*(€ ) (*)
Claim: Do(a) = ¢, D(a),DQ a), DN_ (el) are
all distinct

O
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Proof for Theorem 3.13

(continued...)
(b) Claim: €, D(&;), D*(&),--- , DN=1(&,) are all distinct

If not, suppose Ja,b € Z with 0 < a < b < n— 1 such that
D(&) = D"(&))

— TYD(E)) = T-L(DH(E))

= DYT"(¢;)) = D*(T1(&)), by Lemma 3.7(b)

= D% ) = D’(¢1) which is a contradiction to

DU(&) = &, D(é), D*(é), -, D" (&)

are all distinct ]
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Proof for Theorem 3.13

(continued...)

(b) By Claim and (x), the period of €; is equal to n — k
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Proof for Theorem 3.13

(continued...)

(b) By Claim and (x), the period of €; is equal to n — k
— the period of &; is equal to the period of €;
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Proof for Theorem 3.13

(continued...)

(b) By Claim and (x), the period of €; is equal to n — k
— the period of &; is equal to the period of €;

(c) It is enough to prove that the period of a divides the
period of é;
By Lemma 2.1, we may assume that the periods of @
and & are n— k and n' — ¥, respectively
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Proof for Theorem 3.13

(continued...)

(b) By Claim and (x), the period of €; is equal to n — k
— the period of &; is equal to the period of €;

(c) It is enough to prove that the period of a divides the
period of é;
By Lemma 2.1, we may assume that the periods of @
and & are n— k and n' — ¥, respectively
Write n' — K = (n— k)q+ 1, where ¢, r are
nonnegative integers with

0<r<n—k

So, it suffices to show that » = 0:
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period gf d such that the cycle of d is
similar to the cycle of b
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @ such that the cycle of a is
similar to the cycle of b
— D"(b) = D*(B)
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @ such that the cycle of a is
similar to the cycle of b
— D"(b) = D*(b)

Moreover, the period of & is n/ — ¥
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @ such that the cycle of a is
similar to the cycle of b
— D"(b) = D*(B)

Moreover, the period of & is n/ — ¥
— D" (&)= D"(&)
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @ such that the cycle of a is
similar to the cycle of b
— D"(b) = D*(b)

Moreover, the period of & is n/ — ¥
— D" (&) = D"(&)
By (a), we obtain D" (b) = D¥ (b)
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @ such that the cycle of a is
similar to the cycle of b

— D"(b) = D*(b)

Moreover, the period of & is n/ — ¥

— D" (&) = D"(&)

By (a), we obtain D" (b) = D¥ (b)
Take b = D* (b)
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Proof for Theorem 3.13

(continued...)

(c) By Theorem 3.2, 3b € (Z3)N with the period of b which
is equal to the period of @ such that the cycle of a is
similar to the cycle of b
— D"(b) = D*(b)

Moreover, the period of & is n/ — ¥

— D" (&) = D"(&)

By (a), we obtain D" (b) = D¥ (b)
Take b = D* (b)

By Lemma 3.12, we obtain D" ¥ (b) = b
.

B': Dn/,]d(g) _ D(n—k)qur(B') _ D’I‘(D(ﬂ*k)q(g))
= D'(b), by Lemma 3.12

O
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Proof for Theorem 3.13

(continued...)

-, -,

(C) — Dk:+k’( ): Dk—l—k’+r( )
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Proof for Theorem 3.13

(continued...)

() = Dk:+k’(g) _ Dk—l—k’+r(g)
Write ¥ = (n — k)qo + 19, where qq, 1o are
nonnegative integers with 0 < rp < n—k

—
DFHH (B) = pUkt(n=Bao+ro) ()
— D=Rao (phtro(F))
= DFt™(B), by Lemma 3.12
and
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Proof for Theorem 3.13

(continued...)

(c)

-,

Dk+k’+r( ): Dk+((n—k)q0+ro)+r(5‘)
— D(n—k)qo(Dk-‘r’ro-‘rT(g))
= DM70+7(E), by Lemma 3.12
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Proof for Theorem 3.13

(continued...)

(c)
Dk+k’+r(*) _ Dk+((n—k)¢10+To)+r(5‘)
— p—Rao( ph+rotr(g))
= DM70+7(E), by Lemma 3.12

Then, we have:

Dk+ro+r(_’) _ Dk+k’+r(")
Dk—i—k’(g)
= DM (f) ()
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Proof for Theorem 3.13

(continued...)

(c) Notethat k+rg < k+mn+r<k+r+(n—k =n+n
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Proof for Theorem 3.13

(continued...)
(c) Notethat k+m < k+mrn+r<k+mn+(n—k =n+n
= k+n<k+nrn+r<(n—1)+n, since
k+ 1m0 + r,n+ 19 are integers
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Proof for Theorem 3.13

(continued...)
(c) Notethat k+m <k+n+r<k+mn+(n—Fk =n+n
= k+rn<k+r+r<(n—1)+r, since
k+ 19 + r,n+ 19 are integers
On the other hand, b, D(b), - - - , D¥(b),
DkH(g), 00 ,D”_l(g) are all distinct
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Proof for Theorem 3.13

(continued...)

(c) Notethat k+m < k+mrn+r<k+mn+(n—k =n+n
= k+n<k+nrn+r<(n—1)+n, since
k+ 1m0 + m,n+ 19 are integers
On the other hand, b, D(b), - - - , D¥(b),
DFL(), -+, D" 1(b) are all distinct and
D"(b) = D¥(b), since the period of bis n— k
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Proof for Theorem 3.13

(continued...)

(c) Notethat k+m < k+mrn+r<k+mn+(n—k =n+n
= k+n<k+nrn+r<(n—1)+n, since
k+ 1m0 + m,n+ 19 are integers
On the other hand, b, D(b), - - - , D¥(b),
DFL(), -+, D" 1(b) are all distinct and
D"(b) = D¥(b), since the period of bis n— k
Then, we have:
Dk+ro(g)7 Dk+T0+1(g)7 ... 7Dk+ro+r(g)7 . ,D(n—1)+ro(*)
are all distinct
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Proof for Theorem 3.13

(continued...)

(c) Notethat k+m < k+mrn+r<k+mn+(n—k =n+n
= k+n<k+nrn+r<(n—1)+n, since
k+ 1m0 + m,n+ 19 are integers
On the other hand, b, D(b), - - - , D¥(b),
DFL(), -+, D" 1(b) are all distinct and
D"(B) = D*(b), since the period of b is n— k
Then, we have:
Dk—i—ro(g)7 Dk—‘,—7‘g+1(§)7 . 7Dk—Q—r()—i-r(g)7 . ,D(n—l)—&-m(_’)
are all distinct
By ('), we conclude that k+ 19 = k+ 19 + 7
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Proof for Theorem 3.13

(continued...)

(c) Notethat k+m < k+mrn+r<k+mn+(n—k =n+n
= k+n<k+nrn+r<(n—1)+n, since
k+ 1m0 + m,n+ 19 are integers
On the other hand, b, D(b), - - - , D¥(b),
DFL(), -+, D" 1(b) are all distinct and
D"(b) = D¥(b), since the period of bis n— k
Then, we have:
Dk+ro(g)7 Dk+T0+1(g)7 ... 7Dk+ro+r(g)7 . ,D(n—1)+ro(*)
are all distinct
By ('), we conclude that k+ 19 = k+ 19 + 7
— r=0
Hence, we complete this proof
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Proof for Lemma 3.14

(a) Given Z= (z1, a2, - ,an) € (Zo)N
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Proof for Lemma 3.14

(a) Given Z= (z1, a2, - ,an) € (Zo)N

I+ T(@)=I(T) + T(2)
= S (x1, 22, ,an) + T (21,72, , TN)
:(Il,ZEQ,"' ,IN)-I-(IQ,"' ,JCN,Il)
= (1 + @, - ,aN-1+ TN, TN+ T1)
= (|21 — 22, , |zn—1 — 2N, |28 — 21]),
by Remark 3.8
:@(xbx%... 7$N)
= 9(%)

D=I+T
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Proof for Lemma 3.14

(continued...)
(b) By (a), 7* = (J +7)*
Claim: (¥ +.7)% = .7 + 7%

We prove it by induction on r:

\
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Proof for Lemma 3.14

(continued...)

(b) By (a), 7°" = (J + 7)*
Claim: (¥ +.7)% = .7 + 7%

We prove it by induction on r:
r=0: Itis trivial

\
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Proof for Lemma 3.14

(continued...)

(b) By (a), 7°" = (J + 7)*
Claim: (¥ +.7)% = .7 + 7%

Proof.

We prove it by induction on r:
r=0: It is trivial

Suppose r = K holds

Then, r= K+ 1:

\
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Proof for Lemma 3.14

(continued...)

(b) By (a), 7°" = (J + 7)*
Claim: (¥ +.7)% = .7 + 7%

Proof.

We prove it by induction on r:
r=0: It is trivial

Suppose r = K holds

Then, r= K+ 1:

2K+1

=((# +2)")
= (5 + §2K)2, by induction hypothesis

(I + )

F&F WE-MING WANG DiFry 7NiBR,2#RET A STUDY ABOUT DIFFY HEXAGONS



I

TRODUCTIO CcCI SEQ CES S Y APPENDIX

Proof for Lemma 3.14

(continued...)
(b) Claim: (F + 7)? =7 + 9%

(continued...)

=24 7T 4 T (T

2K+1

=5+ 9"+ 9"+ g
=7 + 92K+1, since T (Zs) C Zo

So, r= K+ 1 holds ]
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Proof for Lemma 3.14

(continued...)
(b) Claim: (F + 7)? =7 + 9%

(continued...)

=24 7T 4 T (T
— s+ L 7 L 7P
=7 + 92K+1, since T (Zs) C Zo

So, r= K+ 1 holds ]

Note that 7V = 7
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Proof for Lemma 3.14

(continued...)
(b) Claim: (F + 7)? =7 + 9%

(continued...)

=2+ 77" + 775+ ()

2K+1

=5+ 9"+ 9"+ g
=7 + 92K+1, since T (Zs) C Zo

So, r= K+ 1 holds ]

Note that 7V = .7
By assumption, we know that 72" = 7%
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Proof for Lemma 3.14

(continued...)
(b) Claim: (F + 7)? =7 + 9%

(continued...)

=24 7T 4 T (T
— s+ L 7 L 7P
=7 + 92K+1, since T (Zs) C Zo

So, r= K+ 1 holds ]

Note that 7V = .7

By assumption, we know that 72" = 7%
LD =(I+ TN =TI+ T =T+ T
Hence, we complete this proof

O]
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Proof for Theorem 3.15

By Lemma 2.1, we may assume that the period of @ is n— k
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Proof for Theorem 3.15

By Lemma 2.1, we may assume that the period of @ is n— k
Note that 2" =0 (mod N)
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Proof for Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of @ is n— k

Note that 2" =0 (mod N)

By Theorem 3.2, 35 € (Z3) with the period of b which is equal to
the period of @

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO ccI SEQ CES S Y (AGONS APPENDIX

Proof for Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of @ is n— k

Note that 2" =0 (mod N)

By Theorem 3.2, 3b € (Z3) with the period of b which is equal to
the period of @ such that the cycle of @ is similar to the cycle of b
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Proof for Theorem 3.15

Proof.

By Lemma 2.1, we may assume that the period of @ is n— k

Note that 2" =0 (mod N)

By Theorem 3.2, 3b € (Z3) with the period of b which is equal to
the period of @ such that the cycle of 615 similar to the cycle of b

= Jm € N such that D"(d@) = mD*(b), where r, s are
nonnegative integers with k< s<n—1

DN(b) = 27(b), since b € (Zy)N
= 7 + 7°b), by Lemma 3.14
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Proof for Theorem 3.15

=7+ 7(b)
= .7(b) +.7(b)

-,

=0, since I (D) € (Zy)®
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Proof for Theorem 3.15

=7+ 7(b)
= .7(b) +.7(b)

-,

=0, since I (D) € (Zy)®

DM@ = DV(D'(a))
= DV(mD*(B))
= mDN¥(b)
= mD*(D"(b))
= mD*(0)
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Proof for Theorem 3.15

(continued...)

I
ST
=11
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Proof for Theorem 3.15

(continued...)

I
ST
=11

On the other hand, we know that
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Proof for Theorem 3.15

(continued...)

I
ST
=11

On the other hand, we know that
— the period of 0 is 1 —0 = 1 and the 1-cycle of 0 is 0
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Proof for Theorem 3.15

(continued...)

I
ST
=11

On the other hand, we know that

D(0) = D(0,0,---,0) = (0,0,---,0) =0 = D°(0)

— the period of 0 is 1 —0 = 1 and the 1-cycle of 0 is 0

— the cycle of d is similar to the 1-cycle of 0 [
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Proof for Theorem 4.1

Given d € Ag
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Proof for Theorem 4.1

Given d € Ag
Let €, = (1,0,0,0,0,0)
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Proof for Theorem 4.1

Given d € Ag
Let & = (1,0,0,0,0,0)
- D(&) = (1,0,0,0,0,1)
D?(é)) = (1,0,0,0,1,0)
D*(é) = (1,0,0,1,1,1)
D) = (1,0,1,0,0,0)
D°(&é) = (1,1,1,0,0,1)
D%(,) = (0,0,1,0,1,0)
O
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Proof for Theorem 4.1

(continued...)

D7(€1) = (071a1a17170)
D?¥(é)) = (1,0,0,0,1,0)
= D*(&)
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Proof for Theorem 4.1

(continued...)

D7(€1) = (071a1a17170)
D?¥(é)) = (1,0,0,0,1,0)
= D*(&)

= the period of € is (8 —2) =6
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Proof for Theorem 4.1

(continued...)

D7(61) = (07 1a 1a 17 17 0)
D?¥(é)) = (1,0,0,0,1,0)
= D*(&)
= the period of € is (8 —2) =6

By Theorem 3.13(c), the period of @ divides 6 and the maximal
period of 6-tuples in Ag is equal to 6 O

4
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Proof for Lemma 4.2

We prove it by enumerating as shown in the following diagrams:
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Proof for Lemma 4.2

We prove it by enumerating as shown in the following diagrams:

(0,0,0,0,0,0)

—: a Ducci process
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Proof for Lemma 4.2

We prove it by enumerating as shown in the following diagrams:

(0,1,0,1,0,1) (1,0,1,0,1,0)
~N S
(1,1,1,1,1,1)
|
(0,0,0,0,0,0)

Y

—: a Ducci process
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Proof for Lemma 4.2

(continued...)

(0,1,1,0,1,1)

[\

(1,1,0,1,1,0) (1,0,1,1,0,1)

"—"

—: a Ducci process
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Proof for Lemma 4.2

(0,0,0,1,1,1) ~ (1,1,1,0,0,0)

N

(0,0,1,0,0,1)

|

(0,1,1,0,1,1)

[\

(1,1,0,1,1,0) (1,0,1,1,0,1)

VA AN

(0,1,0,0,1,0 1,0,1,1,0,0)

(1,1,0,0,0,1)  (0,0,1,1,1,0)  (0,1,1,1,0,0)  (1,0,0,0,1,1)

—: a Ducci process
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(continued...)

(0,1,0,0,0,1)  (1,1,0,0,1,1)
(0,0,1,1,1,1) (0,1,0,1,0,0)
(0,0,0,1,0,1)  (1,1,1,1,0,0)

—

—: a Ducci process
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TRODUCTIO Duccl SEQUENCES

Proof for Lemma 4.2

(0,1,0,0,0,0)  (1,0,1,1,1,1)  (1,0,0,1,0,1)  (0,1,1,0,1,0)

N b N b
(1,1,0,0,0,0) (1,0,1,1,1,0)
\

(1,0,1,0,0,1) r ' \ (1,1,1,0,1,1)
\ d

(1,1,1,0,1,0) — (0,0,1,1,1,1) (0,1,0,1,0,0) «— (0,0,1,1,0,0)
(0,1,0,1,1,0) (0,0,0,1,0,0)

A AN
(1,1,1,1,1,0)  (0,0,0,0,0,1)  (0,1,1,0,0,1)  (1,0,0,1,1,0)

.
/

—: a Ducci process
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(continued...)

(1,0,0,0,1,0)  (1,0,0,1,1,1)
(0,1,1,1,1,0) (1,0,1,0,0,0)
(0,0,1,0,1,0) (1,1,1,0,0,1)

—

—: a Ducci process
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TRODUCTIO Duccl SEQUENCES

Proof for Lemma 4.2

0,1,1,1,1,1)  (1,0,0,0,0,0)  (0,0,1,0,1,1)  (1,1,0,1,0,0)
N b N b

(1,0,0,0,0,1) (0,1,1,1,0,1)
N 7N

(1,0,0,0,1,0) (1,0,0,1,1,1)

(1,0,1,1,0,0) r \ (1,1,0,1,1,1)
\ 4

—

o
(=]

(1,1,0,1,0,1 —> (0,1,1,1,1,0) (1,0,1,0,0,0) «— (0,1,1,0,0,0)
7 J A\
(0,1,0,0,1,1) (0,0,1,0,0,0)
(0,0,1,0,1,0) (1,1,1,0,0,1)

(vo,o,lfol '\—/ (h 0,1,1,1)

e N A AN

(1,1,1,1,0,1)  (0,0,0,0,1,0)  (0,0,1,1,0,1)  (1,1,0,0,1,0)

—: a Ducci process
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Proof for Theorem 4.3

It follows from Theorem 3.2 and Lemma 4.2. O \

FEF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



INTRODUCTIO )UCCI SEQ CES S Y CAGONS APPENDIX

Proof for Lemma 4.4

Write e = (1)(2)(3)(4)(5)(6) which is the identity element of Dg
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Write e = (1)(2)(3)(4)(5)(6) which is the identity element of Dg
Claim 1: exa=4d, Vd € 4g
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Write e = (1)(2)(3)(4)(5)(6) which is the identity element of Dg
Claim 1: exa=4d, Vd € 4g

Given d = (al, ag, - ,a6) € Ag

(ae(l)a Qe(2), """ ae(G))
(0,1, ag, -, aG)

e*x ad=
=a
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Proof for Lemma 4.4

: (mom)xd=m % (m2*d), Vm,m2 € Dg and @ € Ag

DIrry HEXAC
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Proof for Lemma 4.4

Claim 2: (m omg) % &= * (mg x @), V1,72 € De and @ € Ag

Given my,m € Dg and @ = (a1, a2, - , ag) € Ag

\,

Dirry 7N 2EE
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Proof for Lemma 4.4

Claim 2: (7T1 O7T2)>I< Zi:m * (71'2* Ei), Vﬂ'l,ﬂ'g € Dg and ac Aa

Given 7y, € Dg and @ = (al,ag,--- ,a(;) € Ag
Note that

('/Tl o '/TQ) * a4 = (a7T10772(1)7 Arioma(2)s """ a7r107r2(6))

\,
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Proof for Lemma 4.4

Claim 2: (7T1 O7T2)>I< Zi:m * (71'2* Ei), Vﬂ'l,ﬂ'g € Dg and ac Aa

Proof.
Given 7y, € Dg and @ = (al, ag, - - ,a(;) € Ag
Note that

('/Tl o '/TQ) * a4 = (a7T10772(1)7 Arioma(2)s """ a7r107r2(6))

and

™ ok (7T2 & a) T * (aﬂ'z(l)7 Ary(2)y " s aﬂ'g(ﬁ))
= (aﬁl(ﬂ“_)(l))7 Ary(m2(2))s """ s a’m(ﬂg(ﬁ)))

= (‘171'10772(1)7 Orioma(2)y """ s amo'frg(ﬁ))

\,
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Proof for Lemma 4.4

Claim 2: (7T1 O7T2)>I< Zi:m * (71'2* Ei), Vﬂ'l,ﬂ'g € Dg and ac Aa

Proof.
Given 7y, € Dg and @ = (al, ag, - - ,a(;) € Ag
Note that

('/Tl o '/TQ) * a4 = (a7T10772(1)7 Arioma(2)s """ a7r107r2(6))
and

™ ok (7T2 & a) = T * (aﬂ'z(l)7 Ary(2)y " s aﬂ'g(ﬁ))

= (aﬁl(ﬂ“_)(l))7 Ary(m2(2))s """ s a’m(ﬂg(ﬁ)))

= (‘171'10772(1)7 Orioma(2)y """ s amo'frg(ﬁ))
. (m omg) x @ = * (w2 * @) O
By Claim 1 and Claim 2, we complete this proof O
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Proof for Remark 4.7

By assumption, we know that a1, ag,- -+, a6 € {0,1}
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Proof for Remark 4.7

By assumption, we know that a1, ag,- -+, a6 € {0,1}
— 1l—a1,1—apy,: - ,1—&66{0,1}
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Proof for Remark 4.7

By assumption, we know that a1, ag,- -+, a6 € {0,1}
— 1—&1,1—&2,--',1—(166{0,1}
— a_'c:(l—al,l—ag,--',1—a6)€(Zg)6 L]
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Proof for Lemma 4.8

Write a¢ = (by, by, - - - , bg)
= bj=1—0qa;Vi=1,2,---,
Given 7 € Dg

6
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Proof for Lemma 4.8

Proof.

Write a¢ = (by, by, - - - , bg)

— bZ: 1—ai,V2': 1,2,-~~ 76
Given 7 € Dg

Note that

T*at = (bﬂ(1)7 b7r(2)7 ) bﬂ'(ﬁ))
= (1 — (1), 1- Ar(2), """ 1= aﬂ(6))
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Proof for Lemma 4.8

Proof

Write a¢ = (by, by, - - - , bg)

— bZ: 1—ai,V2': 1,2,-~~ 76
Given 7 € Dg

Note that

T*at = (bﬂ(1)7 b7r(2)7 ) bﬂ'(ﬁ))
= (1 — (1), 1- Ar(2), """ 1= aﬂ(6))
and

(77*(_]:) = (a’ w(2) aaﬂ'(G))c

_(1_a7r 1)71_ Ar(2), """ 71_a7r(6))
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Proof for Lemma 4.8

Proof

Write a¢ = (by, by, - - - , bg)

— bZ: 1—ai,V2': 1,2,-~~ 76
Given 7 € Dg

Note that

T*at = (bﬂ(1)7 b7r(2)7 ) bﬂ'(ﬁ))
= (1 — (1), 1- Ar(2), """ 1= aﬂ(6))
and

(77*(_]:) = (a’ w(2) aaﬂ'(G))c

_(1_a7r 1)71_ Ar(2), """ 71_a7r(6))

somxat = (mxd)° O
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Proof for Lemma 4.9

For each 7 € Dg, let Z, = {2 € (Z2) | % 2= 2}
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Proof for Lemma 4.9

For each m € Dg, let Zy = {z € (Z3)® | m* 2= 2z}
By the Burnside's Lemma, we obtain:

|(Z2) /=] = |D—16| A

wE€Dg
1
= 5@ +2+ 24224224242+ 20+ 2+ 20 + 20 4 2)

1
5(64+2+44+8+4+2+8+16+8+16+8+16)
1
=—.1
o 156

=13
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Proof for Lemma 4.9

Finally, we enumerate 13 equivalence classes of (Z3)°:
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Proof for Lemma 4.9

(continued...)

Finally, we enumerate 13 equivalence classes of (Z3)°:

By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)],
[(1,0,0,0,0,0)],[(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],
[(0,0,0,1,1,1)],](0,0,1,0,1,1)],[(0,1,0,1,0,1)]:
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Proof for Lemma 4.9

(continued...)

Finally, we enumerate 13 equivalence classes of (Z3)°:

By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)],
[(1,0,0,0,0,0)],[(0,0,1,0,0,1)],[(1,0,0,0,0,1)],[(1,0,0,0,1,0)],
[(0,0,0,1,1,1)],](0,0,1,0,1,1)],[(0,1,0,1,0,1)]:

[(0,0,0,0,0,0)] = {(0,0,0,0,0,0)}
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Proof for Lemma 4.9

(continued...)

Finally, we enumerate 13 equivalence classes of (Z3)°:

By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)],
[(1,0,0,0,0,0)],[(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],
0,0,0.1,1,1)]. [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]:
(0,0,0,0,0,0)] = {(0,0,0,0,0,0)}

(1,0,0,0,0,0)] = {(1,0,0,0,0,0), (0, 1,0,0,0,0),

[
[
[ =
( O? 1707070) (O O O? ]‘70’ 0)7(0707070’1’0)7(07070’ 0’ 0’ ]')}
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Proof for Lemma 4.9

(continued...)

Finally, we enumerate 13 equivalence classes of (Z3)°:

By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)],
[(1,0,0,0,0,0)],[(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],
[(0,0,0,1,1,1)],](0,0,1,0,1,1)],[(0,1,0,1,0,1)]:
[(0,0,0,0,0,0)] = {(0,0,0,0,0,0)}

[(1,0,0,0,0,0)] = {(1,0,0,0,0,0), (0, 1,0,0,0,0),

(0, 0 ,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1)}
[(0,0,1,0,0,1)] = {(0,0,1,0,0,1), (1,0,0,1,0,0), (0,1,0,0,1,0)}
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Proof for Lemma 4.9

(continued...)

Finally, we enumerate 13 equivalence classes of (Z3)°:

By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)],

[(1,0,0,0,0,0)],[(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],

0,0,0.1,1,1)]. [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]:

(0,0,0,0,0,0)] = {(0,0,0,0,0,0)}

(1,0,0,0,0,0)] = {(1,0,0,0,0,0), (0, 1,0,0,0,0),
,0,1,0,0,0), (0,

(0,0,1,0,0,1)] =

(1,0,0,0,0,1)] =
,1,1,0,0,0), (0,

{
0,0,1,0,0),(0,0,0,0,1,0),(0,0,0,0,0,1)}
{(0,0,1,0,0,1), (1,0,0,1,0,0), (0,1,0,0,1,0)}
{(1,0,0,0,0,1),(1,1,0,0,0,0),

0,

[
[
[
(0
{
(0 1,1,0,0),(0,0,0,1,1,0), (0,0,0,0,1,1)}
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Proof for Lemma 4.9

(continued...)

Finally, we enumerate 13 equivalence classes of (Z3)°:

By Lemma 4.8, it is reduced to write out [(0,0,0,0,0,0)],
[(1,0,0,0,0,0)],[(0,0,1,0,0,1)], [(1,0,0,0,0,1)], [(1,0,0,0,1,0)],
0,0,0.1,1,1)]. [(0,0,1,0,1,1)], [(0,1,0,1,0,1)]:
(0,0,0,0,0,0)] = {(0,0,0,0,0,0)}

(1,0,0,0,0,0)] = {(1,0,0,0,0,0), (0, 1,0,0,0,0),
,0,1,0,0),(0,0,0,0,1,0), (0,0,0,0,0,1)}
(0,0,1,0,0,1),(1,0,0,1,0,0), (0,1,0,0,1,0)}

={
0,1,0,0,0), (0,0

={
{(1,0,0,0,0,1),(1,1,0,0,0,0)
0,
{
1

[

[

[

(2
[(0,0,1,0,0,1)]
[(1,0,0,0,0,1)] =
(0,1,1,0,0,0), (0,
[(1,0,0,0,1,0)] =
(1,0,1,0,0,0), (0,

1,1,0,0),(0,0,0,1,1,0),(0,0,0,0,1,1)}
(1,0,0,0,1,0),(0,1,0,0,0,1),
,0,1,0,0),(0,0,1,0,1,0),(0,0,0,1,0,1)} [
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Proof for Lemma 4.9

[(0,0,0,1,1,1)] = {(0,0,0,1,1,1),(1,0,0,0,1,1),
(1,1,0,0,0,1),(1,1,1,0,0,0),(0,1,1,1,0,0), (0,0,1,1,1,0)}
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Proof for Lemma 4.9

(0,0,0,1,1,1)] = {(0,0,0,1,1,1),(1,0,0,0,1,1),

1,1,1,0,0 0) (0,1,1,1,0,0),(0,0,1,1,1,0)}
(0 0,1,0,1,1),(1,0,0,1,0,1),

,0,1), (1 0,1,1,0,0),(0,1,0,1,1,0),
,0),(0,0,1,1,0,1),(1,0,0,1,1,0),
1

=
=
=
=
zv

APPENDIX
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Proof for Lemma 4.9

(continued..)

[(0,0,0,1,1,1)] = {(0,0,0,1,1,1),(1,0,0,0,1,1),
(1,1,0,0,0,1),(1,1,1,0,0 0) (0,1,1,1,0,0),(0,0,1,1,1,0)}
[(0,0,1,0,1,1)] = {(0,0,1,0,1,1),(1,0,0,1,0,1),
(1,1,0,0,1,0), (0,1,1,0,0, 1), (1 0,1,1,0, 0) (0,1,0,1,1,0),
(1,1,0,1,0,0),(0,1,1,0,1,0), (0,0,1,1,0,1),(1,0,0,1,1,0),
(010011),(101001)}

[(0,1,0,1,0,1)] = {(0,1,0,1,0,1),(1,0,1,0,1,0)} O
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Proof for Theorem 4.10

(0,0,0,0,0,0)

—: a Ducci process
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Proof for Theorem 4.10

(0,1,0,1,0,1)

|

(1,1,1,1,1,1)

|

(0,0,0,0,0,0)

—: a Ducci process
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Proof for Theorem 4.10

continued...

(0,1,1,0,1,1)

—: a Ducci process
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Proof for Theorem 4.10

continued...

(0,0,0,1,1,1)

|

(0,0,1,0,0,1)

|

(0,1,1,0,1,1)

—: a Ducci process
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Proof for Theorem 4.10

continued...

/—\
(1,0,0,0,1,0) (1,0,0,1,1,1)

~__—

—: a Ducci process
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(0,1,1,1,1,1)  (1,0,0,0,0,0) (0,1,1,1,0,1)

(0,1,1,1,0,1) (0,1,1,1,0,1)

AN e
(1,0,0,0,1,0) (1,0,0,1,1,1)

—: a Ducci process
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Proof for Corollary 4.11

It follows from Theorem 3.2 and Theorem 4.10. O \
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Proof for Theorem 4.12

“=" Suppose that r is the period of @ for some @ € Ag
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Proof for Theorem 4.12

“=" Suppose that r is the period of @ for some @ € Ag
By Theorem 3.13(c), the period of @ divides the period
of 51
Therefore, r divides the period of &
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Proof for Theorem 4.12

“=" Suppose that r is the period of @ for some @ € Ag
By Theorem 3.13(c), the period of @ divides the period
of 51
Therefore, r divides the period of &

“«<" Suppose the condition holds
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Proof for Theorem 4.12

=" Suppose that 7 is the period of @ for some @ € Ag
By Theorem 3.13(c), the period of @ divides the period
of 51
Therefore, r divides the period of &

<" Suppose the condition holds

Note that
D(#)) = (1,0,0,0,0,1)
D?(&) = (1,0,0,0,1,0)
D¥(&) = (1,0,0,1,1,1)
D*(&) = (1,0,1,0,0,0)
=(1,0,0,0,1,0), by the proof in Lemma 4.9
= D*(&)
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Proof for Theorem 4.12

(continued...)

“«<" By Remark 4.5(a) and Lemma 4.9, we know that
€1, D(¢1), D*(&é1), D?(€1) are all distinct

F&EF WE-MING WANG Dirry 7ViBH2#Ret A STUDY ABOUT DIFFY HEXAGONS



I

TRODUCTIO )UCCI SEQ CES S Y CAGONS APPENDIX

Proof for Theorem 4.12

(continued...)

“«<" By Remark 4.5(a) and Lemma 4.9, we know that
€1, D(¢1), D*(&é1), D?(€1) are all distinct
.". the period of €; is (4 —2) =2
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Proof for Theorem 4.12

(continued...)

“«<" By Remark 4.5(a) and Lemma 4.9, we know that
€1, D(¢1), D*(&é1), D?(€1) are all distinct
.". the period of €; is (4 —2) =2
By assumption, we know that r | 2
So, we have the following two cases:

Casel: r=1
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Proof for Theorem 4.12

(continued...)

“«<" By Remark 4.5(a) and Lemma 4.9, we know that
€1, D(¢1), D*(&é1), D?(€1) are all distinct
.". the period of €; is (4 —2) =2
By assumption, we know that r | 2
So, we have the following two cases:

Case 1: =1 Choose
a=(0,0,0,0,0,0) € (ZQ)G C Ag
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Proof for Theorem 4.12

(continued...)

“«<" By Remark 4.5(a) and Lemma 4.9, we know that

€1, D(¢1), D*(&é1), D?(€1) are all distinct

.". the period of €; is (4 —2) =2

By assumption, we know that r | 2

So, we have the following two cases:

Case 1: =1 Choose

@ =(0,0,0,0,0,0) € (Z2)8 C Ag
By Theorem 4.10, the cycle of @ is
(0,0,0,0,0,0) and the period of @ is 1
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Proof for Theorem 4.12

(continued...)

“«<" By Remark 4.5(a) and Lemma 4.9, we know that

€1, D(¢1), D*(&é1), D?(€1) are all distinct

.". the period of €; is (4 —2) =2

By assumption, we know that r | 2

So, we have the following two cases:

Case 1: =1 Choose

@ =(0,0,0,0,0,0) € (Z2)8 C Ag
By Theorem 4.10, the cycle of @ is
(0,0,0,0,0,0) and the period of @ is 1
— the period of d is r

Ol
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Proof for Theorem 4.2

(continued...)
et Case 2: r=2
Take @ = (0,0,1,0,1,0) € (Z2)® C Ag
By Theorem 4.10, the cycle of d is
(0,0,1,0,1,0),(0,1,1,1,1,0) and the
period of @ is 2
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Proof for Theorem 4.2

(continued...)

et Case 2: r=2
Take @ = (0,0,1,0,1,0) € (Z2)® C Ag
By Theorem 4.10, the cycle of d is
(0,0,1,0,1,0),(0,1,1,1,1,0) and the
period of @ is 2
= the period of dis r
By Case 1 and 2, we complete this proof
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Prepare for Lemma 2.6

Remark (2.4)
If0<zy<M, then |z—y < M.
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Prepare for Theorem 2.12

If 0 <,y < Mwith |[z— y| = M, then z,y € {0, M} and at least
one of them is M.
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Prepare for Theorem 2.12

(a1, a2, -+ ,an), b (b1, b2, ,by) € AN such that
D(b) = @ and max @ = max b = M.
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Prepare for Theorem 2.12

-

Let ¢ = ((Ll,CLQ,'-- ,aN), b= (bl, bo, - - - ,bN) € Ap such that
D(b) = @ and max @ = max b = M.

Ifa; € {0, M}, Vi=1,2,--- ,t and at least one of them is M, then
b€ {0, M}, Vi=1,2,---  t,t+ 1 and at least one of them is M.
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A remark about Lemma 2.8

Remark (2.9)

In Lemma 2.8, we know that 1 < ¢< N—1, since Ay is a
collection of N-tuples of nonnegative integers.
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Prepare for Theorem 2.12

Let @ € Ay. Suppose D*(@), D**1(ad),- - -
(n — k)-cycle of a.
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Prepare for Theorem 2.12

Let @ € Ay. Suppose D*(a@), D*1(d),--- , D"~ 1(d) is the
(n — k)-cycle of @. Then, there are at least i+ 1 cyclic consecutive
components of D\"~1V)=%(d) taken from 0 or M such that at least
one of them is M, where M = max D¥(d).
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Prepare for Theorem 2.12

In Lemma 2.10, we observe that:
(a) 0<i< N-—-1.
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Prepare for Theorem 2.12

In Lemma 2.10, we observe that:
(a) 0<i< N-—-1.
(b) If i < min{n — k— 1, N— 1}, then D(""D=¥(G) is in
the (n — k)-cycle of a.
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A property about the greatest common divisor of @ in Ay

Lemma (2.18)

Let G e Ay with @+ 0. For all nonnegative integers r, s with
r < s, then gcd D"(@) | ged D*(d).
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A property about the greatest common divisor of @ in Ay

Lemma (2.18)

Let G e Ay with @+ 0. For all nonnegative integers r, s with
r < s, then gcd D"(@) | ged D*(@). In particular, we have
ged D7(@) < ged D*(a).
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A property about the greatest common divisor of d in Ay

Lemma (2.18)

Let @ € Ay with @+ 0. For all nonnegative integers r, s with

r < s, then gcd D"(d) | gcd D*(@). In particular, we have
ged D' (a@) < ged D*(a).

=(3,3,3,3,3,9) gedd =3
D( ) (0,0,0,0,6,6) ged D(@) = 6
D*(@) = (0,0,0,6,0,6) ged D*(d@) = 6
D*(d@) = (0,0,6,6,6,6) ged D3(d) =6
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The greatest common divisor of @ in the cycle of @

Let @ € Ay with @+ 0.
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The greatest common divisor of @ in the cycle of @

Let @ € Ay with @+ 0. Suppose that
D¥@), D*1(@), - -, D" (@) is the (n — k)-cycle of a.
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The greatest common divisor of @ in the cycle of @

Let @ € Ay with @+ 0. Suppose that
D¥@), D*1(@), - - -, D"~ () is the (n — k)-cycle of G. Then, we
have ged D™(a@) = ged D*(a) for all k< r,s < n—1.
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APPENDIX

The greatest common divisor of @ in the cycle of @

Let @ € Ay with @+ 0. Suppose that
D¥@), D*1(@), - - -, D"~ () is the (n — k)-cycle of G. Then, we
have ged D™(a@) = ged D*(a) for all k< r,s < n—1.

i=(0,1,2,2,1,0) D3(d@) = (1,0,1,1,0,1)
D(d) = (1,1,0,1,1,0) DY@) = (1,1,0,1,1,0)
D*(d@) = (0,1,1,0,1,1) = D(a)
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INTRODUCTIO )UCCI SEQ CES SIMILAR CYCLES DIFFY HEXAGONS APPENDIX

The converse of Lemma 2.6 and Lemma 2.19 may not be

true even if put them together

Example (2.20)

é = (1,0,0,0,0,0) € Ag D*(é) = (1,1,1,0,0,1)
D(é) = (1,0,0,0,0,1) DS(%) = (0,0,1,0,1,0)
D*(&) = (1,0,0,0,1,0) D'(#) = (0,1,1,1,1,0)
D*(@) = (1,0,0,1,1,1) D¥(&) = (1,0,0,0,1,0)
DY(&) = (1,0,1,0,0,0) = D*(&)
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The converse of Lemma 2.6 and Lemma 2.19 may not be

true even if put them together

Example (2.20)

é = (1,0,0,0,0,0) € Ag D*(é) = (1,1,1,0,0,1)
D(é) = (1,0,0,0,0,1) DS(%) = (0,0,1,0,1,0)
D*(&) = (1,0,0,0,1,0) D'(#) = (0,1,1,1,1,0)
D*(#) = (1,0,0,1,1,1) D3(@) = (1,0,0,0,1,0)
DY(&) = (1,0,1,0,0,0) = D*(&)

= the period of é; is (8 —2) =6
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INTRODUCTIO )UCCI SEQ CES SIMILAR CYCLES DIFFY HEXAGONS APPENDIX

The converse of Lemma 2.6 and Lemma 2.19 may not be

true even if put them together

Example (2.20)

é1 = (1,0,0,0,0,0) € Ag D°(&) = (1,1,1,0,0,1)
D(é) = (1,0,0,0,0,1) DS(%) = (0,0,1,0,1,0)
D*(&) = (1,0,0,0,1,0) D'(#) = (0,1,1,1,1,0)
D*(#) = (1,0,0,1,1,1) D3(@) = (1,0,0,0,1,0)
DY(&) = (1,0,1,0,0,0) = D*(&)

the period of €; is (8 — 2) = 6, and the 6-cycle of é; is
D2(_’1)’ D3(61)7 D4(€1)> D5(El)v DG(gl)v D7(€1)
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The converse of Lemma 2.6 and Lemma 2.19 may not be

true even if put them together

Example (2.20)

é1 = (1,0,0,0,0,0) € Ag D°(&) = (1,1,1,0,0,1)
D(é) = (1,0,0,0,0,1) DS(%) = (0,0,1,0,1,0)
D?(@) = (1,0,0,0,1,0) D'(e) = (0,1,1,1,1,0)
D*(@) = (1,0,0,1,1,1) D¥(&) = (1,0,0,0,1,0)
DY(&) = (1,0,1,0,0,0) = D*(&)

— the period of é; is (8 — 2) = 6, and the 6-cycle of € is
D2(3), D(&1), D), DP (&), D°(@0), DY (@)
Note that ged D'(é;) = 1 = max D'(é;) for all i=0,1,---,7
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The converse of Lemma 2.6 and Lemma 2.19 may not be

true even if put them together

Example (2.20)

é1 = (1,0,0,0,0,0) € Ag D°(&) = (1,1,1,0,0,1)
D(é) = (1,0,0,0,0,1) DS(%) = (0,0,1,0,1,0)
D?(@) = (1,0,0,0,1,0) D'(e) = (0,1,1,1,1,0)
D*(@) = (1,0,0,1,1,1) D¥(&) = (1,0,0,0,1,0)
DY(&) = (1,0,1,0,0,0) = D*(&)

— the period of é; is (8 — 2) = 6, and the 6-cycle of € is
D2(3), D(&1), D), DP (&), D°(@0), DY (@)

Note that ged D'(é;) = 1 = max D'(é;) for all i=0,1,---,7
However, D°(€;) = &, D(€;) are not in the cycle of &
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APPENDIX

A property about the complement of N-tuples in Ay

Let a= (a1, a2, - ,an) € AN and max 4= M. Suppose the cyc/e
of a is similar to the cycle of b, where b € (Z2)® and the period of b
is equal to the period of a.
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APPENDIX

A property about the complement of N-tuples in Ay

Let a= (a1, a2, - ,an) € AN and max 4= M. Suppose the cyc/e
of a is similar to the cycle of b, where b € (Z2)® and the per/od of b
is equal to the period of @. If a® = (M — ay, M — ag,--- , M — ay),
then the cycle of at is similar to the cycle of b.
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A property about the complement of N-tuples in Ay

Let a= (a1, a2, - ,an) € AN and max 4= M. Suppose the cyc/e
of a is similar to the cycle of b, where b € (Z2)® and the per/od of b
is equal to the period of @. If a® = (M — ay, M — ag,--- , M — ay),
then the cycle of at is similar to the cycle of b.

=(0,2,4,4,2,0) at = (4,2,0,0,2,4)
D(d ) (2,2,0,2,2,0) D(a®) = (2,2,0,2,2,0)
D?(d) = (0,2,2,0,2,2) D?(a®) = (0,2,2,0,2,2)
D*(d) = (2,0,2,2,0,2) D*(a®) = (2,0,2,2,0,2)
DY(d) = (2,2,0,2,2,0) = D(d) DHa®) = (2,2,0,2,2,0)=D(a?)
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A remark about the proof in Lemma 3.4

-,

In the proof of Lemma 3.4, Ds*1(b) is in the cycle of b.
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APPENDIX

Notations

Now, we define T': Ay — Ay by

T(x1, 22, , TN-1,2N) = (22,23, - , TN, T1)

for all (z1, 20, ,xN_1,2N) € AN.
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APPENDIX

Notations

Now, we define T': Ay — Ay by

T(z1, 22, , N—1,2N) = (22,23, , TN, 1)

for all (z1, 22, ,xn_1,2N) € Ap. Clearly, T is well-defined.
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APPENDIX

Notations

Now, we define T': Ay — Ay by

T(z1, 22, , N—1,2N) = (22,23, , TN, 1)

for all (z1, 22, ,xn_1,2N) € Ap. Clearly, T is well-defined.
On the other hand, we fix the following notations:
2=D ‘(ZQ)N, T=T |(ZQ)N, and
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Notations

Now, we define T': Ay — Ay by

T(z1, 22, , N—1,2N) = (22,23, , TN, 1)

for all (z1, 22, ,xn_1,2N) € Ap. Clearly, T is well-defined.

On the other hand, we fix the following notations:

2 =D gy, T = T|(Z)N,and_@0 T0 = 7, where .# is the
identity on (Zg)
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A property about the complement of N-tuples in cycles

Lemma (3.6)

Let a= (a1, a2, ,ay) € Ay and max =M. Suppose that
Dk(6>7 Dk+1(a)7 Ty anl(a*)

is the (n— k)-cycle of a.
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APPENDIX

A property about the complement of N-tuples in cycles

Lemma (3.6)

Let a= (a1, a2, ,ay) € Ay and max =M. Suppose that
Dk(6>7 Dk+1(a)7 Ty anl(a*)

is the (n— k)-cycle of @. Then, a¢ = (M —a;, M— ay,--- , M— ay)
is in the (n — k)-cycle of @ if and only if G = 0.
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A property about D and T

Let Z,y € Ay and c be a nonnegative integer, then
(a) T(cZ+ 9y) = cT(Z) + T(Y).
(b) DoT= ToD.
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Prepare for Theorem 3.13

Remark (3.8)
Let z,y € Zo. Then, |z—y| =z+ y.
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Prepare for Theorem 3.13

Remark (3.9)
Let .2 : (Z2)N — (Z2)" be a function.
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Prepare for Theorem 3.13

Remark (3.9)

Let £ : (Z2)N — (Z2)" be a function. Then, we know that .& is
a linear transformation if and only if £ (Z+ y) = Z(Z) + £ () for
all Z,7 € (Z2)V.
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A property about .7

T is a linear transformation for each i=0,1,2,--.
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A property about ¥

9% is a linear transformation for each i=0,1,2,---.
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Prepare for Theorem 3.13

Lemma (3.12)

Let @ € Ay. Suppose that r, s, t are nonnegative integers such that
s<rands<t
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Prepare for Theorem 3.13

Lemma (3.12)

Let @ € Ay. Suppose that r, s, t are nonnegative integers such that
s<rands<t If D'(d) = D°(d), then

DU(D!(@)) = D'(d)

for each i=10,1,2,---.
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Prepare for Theorem 3.15

Let r, s be nonnegative integers. Then, we have:
(a) 29=7+ 7.
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Prepare for Theorem 3.15

Let 1, s be nonnegative integers. Then, we have:
Q) 2=7+7.
(b) If2" = s (mod N), then 2" = . + T°.
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Similar cycles of 6-tuples in Ag

Theorem (4.3)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).
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Similar cycles of 6-tuples in Ag

Theorem (4.3)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).
(ii) (3-cycle) (0,1,1,0,1,1),(1,0,1,1,0,1), (1,1,0,1,1,0).
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Similar cycles of 6-tuples in Ag

Theorem (4.3)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).
(ii) (3-cycle) (0,1,1,0,1,1),(1,0,1,1,0,1), (1,1,0,1,1,0).

(iii) (6-cycle) (0,1,0,0,0,1),(1,1,0,0,1,1),(0,1,0,1,0,0),
(1,1,1,1,0,0),(0,0,0,1,0,1),(0,0,1,1,1,1).
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Similar cycles of 6-tuples in Ag

Theorem (4.3)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).

(ii) (3-cycle) (0,1,1,0,1,1),(1,0,1,1,0,1), (1,1,0,1,1,0).

(iii) (6-cycle) (0,1,0,0,0,1),(1,1,0,0,1,1),(0,1,0,1,0,0),
(1,1,1,1,0,0),(0,0,0,1,0,1),(0,0,1,1,1,1).

(iv) (6-cycle) (1,0,0,0,1,0),(1,0,0,1,1,1),(1,0,1,0,0,0),
(1,1,1,0,0,1),(0,0,1,0,1,0),(0,1,1,1,1,0).
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The complement of 6-tuples in (Zs)"

Definition (4.6)

Let @ = (a1, a2, -, ag) € (Z2)5. The complement of G is defined
to be (1 — aj,1 — ag,---,1 — ag) and we denote it by a®.
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The complement of 6-tuples in (Zs)"

Definition (4.6)

Let @ = (a1, a2, -, ag) € (Z2)5. The complement of G is defined
to be (1 — aj,1 — ag,---,1 — ag) and we denote it by a®.

Remark (4.7)

If @= (a1, an,--- ,a6) € (Z2)5, then at € (Zy)S.
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A property of the complement of 6-tuples in (Z)"

Lemma (4.8)

If@=(ay,ag,-- ,a5) € (Z3)5, then m % a® = (7w x @) for all
WEDG.
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A property of the complement of 6-tuples in (Z)"

Lemma (4.8)

If@=(ay,ag,-- ,a5) € (Z3)5, then m % a® = (7w x @) for all
WEDG.
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Similar cycles of Diffy Hexagons

Corollary (4.11)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).
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Similar cycles of Diffy Hexagons

Corollary (4.11)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).
(ii) (1-cycle) (0,1,1,0,1,1).
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Similar cycles of Diffy Hexagons

Corollary (4.11)

Let @ € Ag. Then, the cycle of a is similar to one of the following
cycles:

(i) (1-cycle) (0,0,0,0,0,0).
(ii) (1-cycle) (0,1,1,0,1,1).
(iii) (2-cycle) (0,0,1,0,1,0),(0,1,1,1,1,0).
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The period of Diffy N-gons

Let r, s be positive integers. Suppose that N = 2° and
= (1,0,"' ,0) € Ay.
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APPENDIX

The period of Diffy N-gons

Let r, s be positive integers. Suppose that N = 2° and
€ =(1,0,---,0) € Ay. By Theorem 3.15, all similar cycles of
N-tuples in Ay are 1-cycle of 0
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The period of Diffy N-gons

Let r, s be positive integers. Suppose that N = 2° and

€ =(1,0,---,0) € Ay. By Theorem 3.15, all similar cycles of
N-tuples in Ay are 1-cycle of 0 which implies the period of every
N-tuples in Ay is 1,
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The period of Diffy N-gons

Let r, s be positive integers. Suppose that N = 2° and

€ =(1,0,---,0) € Ay. By Theorem 3.15, all similar cycles of
N-tuples in Ay are 1-cycle of 0 which implies the period of every
N-tuples in Ay is 1, and hence the conclusion in Theorem 4.12,
that is 7 is the period of a@ for some @ € Ay if and only if r divides
the period of €, is true without identification we use in this

chapter.
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The period of Diffy N-gons

Let r, s be positive integers. Suppose that N = 2° and

€ =(1,0,---,0) € Ay. By Theorem 3.15, all similar cycles of
N-tuples in Ay are 1-cycle of 0 which implies the period of every
N-tuples in Ay is 1, and hence the conclusion in Theorem 4.12,
that is 7 is the period of a@ for some @ € Ay if and only if r divides
the period of €, is true without identification we use in this
chapter. However, above conclusion does not hold in Ag due to
Lemma 4.2.
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The period of Diffy N-gons

If we had enough time, we would like to have further discussions
about that at what positive integer N above conclusion holds (even
if the identification we use in this chapter is necessary).
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