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Introduction

Secure Set

An Attack on S

A:S— P(V(G)— S) such that A(u) € Ng[u] — Sforanyu e S
and A(u)yNA(v) =0 forany u#veS.

v

A Defense of S

D: S — P(S) such that D(u) C Ng[u]n Sforany u € S and
D(uyn D(v) =0 forany u# v € S.
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Introduction

Secure Set

An Attack on S

A: S — P(V(G)— S) such that A(u) € Ng[u] — Sforany u e S
and A(u)ynA(v) =0foranyu#veS.

A Defense of S

D: S — P(S) such that D(u) C Ng[u]n Sforany u € S and
D(uyn D(v) =0 forany u+# v € S.

| A

R. Brigham, R. Dutton and S. Hedetniemi, 2004

A subset S of V(G) is a secure set of G if for any attack Aon S,
there exists a defense D of S such that |D(u)| > |A(u)| for any
ueS.
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Introduction

Secure Set

A subset S of V(G) is a dominating set if Ng[S] = V(G).

Secure-dominating Set and Secure-dominating Number

@ A subset S of V(G) is a secure-dominating set of Gif S'is
a secure set of G that is also a dominating set of G.

@ The secure-dominating number v*(G) of G is the minimum
cardinality of secure-dominating sets of G.

A

VAN
)
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Preliminary

Preliminary

Proposition 2.1

If Sis a secure set of a graph G, then for each vertex v in S,
[NVl N S| = [Ng(v) — SI.

ING[v] N S| < |Ne(v) - S|

Theorem 2.4
For any graph G, +°(G) > [@1.

Let S be a secure-dominating set.
IS| = > [D(u)] = > |A(u)| = [V(G) - SI.
ues uesS
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Preliminary

Known Results

C.-L. Chang, T.-P. Chang and D. Kuo, 2009

Y (PmOPpr) = [517, if mand n are at least two;
v (PmOCp) = [—1, ifm>2andn>3;
Y (CnOCp) = +1, ifm=2 (mod 4)

and n =3 (mod 4);
v (CmOCp) =[5, ifm#2 (mod 4) orn#3 (mod 4).

o’

'YS(Kmhmg,.‘.,m,) — (W}, |f / 2 2

K.-P. Huang and S.-T. Juan, 2011

If 'is an integer at least 2 and my, mo, ..., m; are positive
integers, then vS(Pp, OPp,0---0OPp,) =
'yS(K,m DKm2D - DKm,) — [W}
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Preliminary

Main Idea 1

Let V4, Vo, ..., Vi be a partition of V(G).

If Sjis a secure-dominating set of G[V;] for each 1 < i < k,
and N[S;|NN[S;] =0, forany 1 <i#j <Kk,

then S; U S, U -+ - U S is a secure-dominating set of G.

If uis notin S, then u e V; — S for some |.
Only the vertices in S; can be attacked by u.
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Preliminary

Main Idea 2

Let S be a dominating set and V(G) — S = {vy, vo, ..., W}.
If S can be partitioned into Sy, S», ..., Sk such that,
foreach i, N(v;)nS C N[S§;]]n S.

Then S is a secure-dominating set.

/*
- ,7\/ \

If some vertex in S is attacked by v;, then we can use some
vertex in S; to defense the attack.
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Strong Product

Results on the strong product of two graphs

Strong Product of Graphs

Let X and Y be two graphs.

The strong product X X Y of X and Y is the graph such that
VIXRY)=V(X) x V(Y),

(X1, ¥1) ~ (X2, ¥2) in XX Y if and only if

X1 = Xo OF X1 ~ Xo in X, andy1 =)yo0rys~Jyo inY.

(1,1) (1,4)

(2,1) (2,4)

(3,1) (3,4)
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Strong Product

Sos={(2,j):j=1,2 (mod 4)} U{(/,j):i=0,3 J
(mod 4),1 <j <5}.

(1,1) (1,5)

1) 2.5)

9,1) (9,5)
PyX P;

Hung-Ming Chang, National Kaohsiung Normal University The Study of Secure-dominating Set of Graph Products



Strong Product

Sos=1{(2,)):j=1,2 (mod 4)} U{(i,j) : i =0,3 J
(mod 4),1 <j <5}.

1) (1,5)

(2,1) (2,5)

(5,1)

©.1 ©,5)
PyX Ps
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Strong Product

Results on the strong product of two graphs

Let G and H are two graphs. If Sg is a secure-dominating set of
G,then S={(s,h): s € Sg,h € V(H)} is a secure-dominating
setof GX H.

G GRH

Hung-Ming Chang, National Kaohsiung Normal University The Study of Secure-dominating Set of Graph Products



Strong Product

Results on the strong product of two graphs

Let G and H are two graphs. If Sg is a secure-dominating set of
G,then S={(s,h): s € Sg,h € V(H)} is a secure-dominating
setof GX H.

Hung-Ming Chang, National Kaohsiung Normal University The Study of Secure-dominating Set of Graph Products



Strong Product

Results on the strong product of two graphs

Let G and H are two graphs. If Sg is a secure-dominating set of
G,then S={(s,h): s € Sg,h € V(H)} is a secure-dominating
setof GX H.

Hung-Ming Chang, National Kaohsiung Normal University The Study of Secure-dominating Set of Graph Products



Strong Product

Results on the strong product of two graphs

Let G and H are two graphs. If Sg is a secure-dominating set of
G,then S={(s,h): s € Sg,h € V(H)} is a secure-dominating
setof GX H.

G GRH

Hung-Ming Chang, National Kaohsiung Normal University The Study of Secure-dominating Set of Graph Products



Strong Product

Results on the strong product of two graphs

Theorem 6.2

Let G and H be two gaphs. We have
7 (GR H) < min{y*(G)|H|, |Gly*(H)}-

Let Sg be a secure-dominating set of G with size v3(G) and Sy
be a secure-dominating set of H with size v°(H).

By Lemma, S = {(s,h): s Sg,h e V(H)} and

S ={(s,H):s" € V(G),H € Sy} are both secure-dominating
sets of GX H.

Hence, 75(G & H) < min{|S|,|S'[} = min{|Sgl|H]., |Gl|Skl} =
min{~*(G)|H|, |Gly*(H)}-

Hung-Ming Chang, National Kaohsiung Normal University The Study of Secure-dominating Set of Graph Products



Strong Product

Results on the strong product of two graphs

Corollary 6.3

Let G and H be two graphs. If v5(G) = @ then
Y (GR H) = -

If3(G) = '9., then +5(GR H) < min{y*(G)|H|,|Gy*(H)} =
min{'Gng, ]Gw (H)} = ‘G!h” = |G§H| by Theorem 2.4.
By Theorem 6.2, v5(G® H) > 195111, Hence,

Y(GR H) = 1&H
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Lexicographic Product

Results on H[G]

Lexicographic Product of Graphs

Let X and Y be two graphs.

The lexicographic product X[Y] of X and Y is the graph such
that V(X[Y]) = V(X) x V(Y),

(X1,¥1) ~ (X2, y2) in X[Y] if and only if

either x; ~ xo in X, 0r xy = xo and y; ~ yoin Y.

*—eo —o —o

P3[Py)
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Lexicographic Product

Results on H[G]

Let G and H be two graphs.

If Sg is a secure-dominating set of G,

then H[Sg] = {(h,g) : he V(H),g € Sg}isa
secure-dominating set of H[G].
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Lexicographic Product

Results

Let G and H be two graphs,
we have vS(H[G]) < 7v5(G)|H|.

Let Sg is a secure-dominating set with size v°(G),
then v*(H[G]) < |H[S¢]| < v*(G)IH|.
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Conclusions

Conclusions

(75(Pn Pr) =[]

Y3(Pm® Cp) = [5], if mis even
orn#2 (mod 4);

[ <v3(PmRCp) < [B] +1, if misodd
and n=2 (mod 4);

v (Cm X Cp) = [, if m=0 (mod 4),
or mand n are both odd
except m=n=3 (mod 4);

[ <y3(CnRCp) < [ +1, iftm=n=3 (mod 4)
exceptm=n=7,
orm=2 (mod 4)
and nis odd;

[ <v3(CmX Cp) < [T+ 2, if mand nare both 7
orm=n=2 (mod 4).
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Conclusions

Conclusions

vS(GRH) < min{y5(G)|H|,|GIS(H)},  if Gand H are

two graphs;
V(P ® G) = +5(Km ¥ G) = ™l if mis even;
(221 < 1°(PnB G) <%(G) + (2503 if mis ocd,
[#-‘ < 5(Km R G) < v5(G) + (m=-1)IG| 1)‘G| if mis odd.

v*(H[G]) < v*(G)|H]| for any two graphs G and H.
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