On Antimagic Labeling and Associated Deficiency Problems for Graph Products

Advisor: Hung-Lin Fu and Tao-Ming Wang

Student : Si-Hao Wu

August 2, 2014

Outline

- Introduction and Background
- Main Result for Strong Products
- Main Result for Antimagic Deficiency of Graph Products
- Open Problems and Further Studies
- References

Outline

- 1 Introduction and Background
- 2 Main Result for Strong Products
- Main Result for Antimagic Deficiency of Graph Products
- Open Problems and Further Studies
- 6 References

Definition of antimagic labeling

We assume throughout that all graphs G are finite, simple and without any isolated vertex.

Definition

- For a graph G=(V,E) with q edges and without any isolated vertex, an antimagic edge labeling is a bijection $f:E \to \{1,2,\ldots,q\}$, such that the induced vertex sum $f^+:V\to Z^+$ given by $f^+(u)=\sum\{f(uv):uv\in E\}$ is injective.
- ullet A graph G is called antimagic if it admits an antimagic labeling.

An example of antimagic labeling

Figure : C_5

Definition of graph products

Let H and G be two graphs with $V(H) = \{u_1, u_2, \dots, u_{p_H}\}$, $V(G) = \{v_1, v_2, \dots, v_{p_G}\}$.

Definition

The **Cartesian product** $H \square G$ of H and G is defined as follows: $V(H \square G) = V(H) \times V(G)$ and (u_i, v_j) is adjacent with (u_i', v_j') if and only if either (1) $u_i = u_i'$ and $v_j v_j' \in E(G)$ or (2) $v_j = v_j'$ and $u_i u_i' \in E(H)$.

Definition

The **direct product (or tensor product)** $H \times G$ of H and G is defined as follows: $V(H \times G) = V(H) \times V(G)$ and (u_i, v_j) is adjacent with (u_i', v_j') if and only if $u_i u_i' \in E(H)$ and $v_j v_j' \in E(G)$.

Definition of graph products

Let
$$H$$
 and G be two graphs with $V(H) = \{u_1, u_2, \dots, u_{p_H}\}$, $V(G) = \{v_1, v_2, \dots, v_{p_G}\}$.

Definition

The **strong product** $H \boxtimes G$ of graphs H and G is the graph with vertex set $V(H) \times V(G)$, and (u_i, v_j) is adjacent with $(u_i', v_j') \Leftrightarrow (1)$ $u_i = u_i'$ and $v_j v_j' \in E(G)$ or (2) $v_j = v_j'$ and $u_i u_i' \in E(H)$ or (3) $u_i u_i' \in E(G)$ and $v_j v_j' \in E(H)$.

Note that the edges set of the **strong product** $G \boxtimes H$ is the disjoint union of the edges set of the **direct product (or tensor product)** $G \times H$ and the edge set of the **Cartesian product** $G \square H$.

Strong Product of $P_4 \boxtimes C_3 = C_3 \boxtimes P_4$

Survey

- **1** G. N. Hartsfield and G. Ringel introduced the concept of the antimagic labeling of graphs first. They showed that paths, cycles, complete graphs $K_n (n \ge 3)$ are antimagic and conjectured that all connected graphs except K_2 are antimagic, in 1990.
- ② In 2004, N. Alon et al proved that this conjecture is true for dense graphs; they showed that all graphs with p vertices $(p \ge 4)$ and minimum degree $\Omega(\log p)$, they are antimagic.
- **3** N. Alon et al also proved that if G is graph with $n \ge 4$ vertices and $\Delta(G) \ge n-2$ then G is antimagic and all complete partite graphs except K_2 are antimagic.
- **③** In 2005, D. Hefetz proved that, among others, for k ∈ N, a graph G with 3^k vertices is antimagic if it admits a K_3 -factor.
- **1** In 2009, D.W. Cranston showed that every regular bipartite graph (with degree at least 2) is antimagic.

Survey for Graph Products

- T. Wang showed that the Cartesian products of cycles and regular graphs are antimagic in 2005.
- ② T. Wang also considered the antimagic labeling of Cartesian products and lexicographic products of graphs in 2008.
- Y. Cheng proved that all Cartesian products of two or more regular graphs are antimagic in 2008.
- Yu-Chang Liang and X. Zhu show that the Cartesian product of any regular graph and any graph are antimagic in 2013.
- Ying-Ren Chen show in his PhD thesis that the strong product of a cycle and any regular graph is antimagic in 2012.

Outline

- 1 Introduction and Background
- 2 Main Result for Strong Products
- Main Result for Antimagic Deficiency of Graph Products
- Open Problems and Further Studies
- 6 References

Main Result

Theorem (Yin-Ren Chen, PhD Thesis, 2012)

The strong product $C_n \boxtimes H$ is antimagic, if H is a r-regular graph (not necessarily connected) where $r \geq 1$.

Main Result

Theorem (Yin-Ren Chen, PhD Thesis, 2012)

The strong product $C_n \boxtimes H$ is antimagic, if H is a r-regular graph (not necessarily connected) where $r \geq 1$.

We generalize his result as follows:

Theorem

Let G be an even regular graph and H be any r-regular graph (not necessarily connected), $r \geq 1$. Then the strong product $H \boxtimes G$ is antimagic.

Plan of Proof

Decompose the edge set into three parts and give labeling:

- Check that the vertex sum sequence is strictly increasing(or decreasing).
 - Looking at the partial sum sequence and compare.
- We will connected all vertex sum sequence, hence pairwise distinct.
 - ► We compare the maximum of one sequence and the minimum of another sequence.

Outline

- Introduction and Background
- 2 Main Result for Strong Products
- 3 Main Result for Antimagic Deficiency of Graph Products
- Open Problems and Further Studies
- 5 References

The definition of (a, d)-antimagic labeling

Definition

A graph G=(V,E) is said to be (a,d)-antimagic if there exist positive integers a,d and a bijection $f:E\to\{1,2,\ldots,|E|\}$ such that the induced mapping $f^+:V\to N$, defined by $f^+(v)=\sum\{f(uv)|uv\in E(G)\}$, is injective and $f^+(V)=\{a,a+d,\cdots,a+(|V|-1)d\}$.

Here we concern about (a, 1)-antimagic labeling. Note that if a graph is (a, 1)-antimagic, then it is antimagic.

The necessary condition of (a, 1)-antimagic labeling

G is called a (p, q)-graph if it has p vertices and q edges.

Lemma (Bodendiek and Walther, 1998)

If a (p,q)-graph is (a,1)-antimagic, then $q(q+1)=pa+\frac{(p-1)p}{2}$.

pf.

$$2(1+2+\cdots+q) = a + (a+1) + \cdots + (a+p-1),$$

and implies $q(q+1) = pa + \frac{(p-1)p}{2}$.

Corollary

For q = p, if a (p, q)-graph is (a, 1)-antimagic, then p must be odd.

The definition of (a, 1)-antimagic deficiency

Definition

- For a (p,q)-graph G, the (a,1)-antimagic deficiency $d_1(G)$ is defined as min k such that the injective edge labeling $f: E(G) \to \{1, 2, \cdots, q+k\}$ is (a,1)-antimagic.
- Note $d_1(G) = 0$ if a graph G is (a, 1)-antimagic, and $d_1(G) = +\infty$ if G can not be (a, 1)-antimagic by relaxing the range of edge labels.

Corollary

 $d_1(C_{2n}) \geq 1.$

Odd cycle C_{2n+1} is (a, 1)-antimagic

Lemma (Bodendiek and Walther, 1998)

Odd cycle C_{2n+1} is (a,1)-antimagic for $n \ge 1$.(i.e $d_1(C_{2n+1}) = 0$)

Figure : An example of C_5 is (4,1)-antimagic

$$d_1(G) = +\infty$$
 when $|V(G)| \equiv 2 \pmod{4}$

Lemma

$$d_1(G) = +\infty$$
 if G has $p \equiv 2 \pmod{4}$ vertices.

pf.

$$2(e_1 + e_2 + \dots + e_*) = a + (a+1) + \dots + a(4n+1)$$
$$= (4n+2)a + (4n+1)(2n+1)$$

due to $2(e_1+e_2+\cdots+e_*)$ and (4n+2)a are even, then (4n+1)(2n+1) is even $(\rightarrow \leftarrow)$

Corollary

$$d_1(C_{4n+2}) = +\infty$$

$$d_1(C_{4n})=1$$

Lemma

$$d_1(C_{4n})=1$$

pf.

Find missing value x in labels $1, 2, \dots, 4n$ $2(1+2+\dots+4n+1-x) = a+(a+1)+\dots+(a+4n-1)$ $\Rightarrow (4n+1)(2n+1)-x = 2na+n(4n-1),$ hence

$$a = \frac{4n^2 + 7n + 1 - x}{2n} = 2n + 3 + \frac{n + 1 - x}{2n} \in \mathbf{N}$$

. Suppose that $\frac{n+1-x}{2n}=k\in \mathbb{Z}$, then x=n+1-2nk because $1\leq x\leq 4n$, $-n\leq -2nk\leq 3n-1$, therefore k must be 0 or -1 and implies the missing value x=n+1 or 3n+1.

x = n + 1 or 3n + 1.

$d_1(C_{4n}) = 1$ (the missing value x = n + 1 or 3n + 1)

Figure : C_8 (the missing value x = 3, 7)

(a, 1)-antimagic+2-fctor keep (a, 1)-antimagic

Lemma (J. Ivančo, A. Semaničová, 2006)

Assume H is a graph which arose from a graph G of p vertices and q edges by adding an arbitrary 2k-factor. If G is (a,1)-antimagic, then H is still (a,1)-antimagic.

(a, 1)-antimagic+2-fctor keep (a, 1)-antimagic

Lemma (J. Ivančo, A. Semaničová, 2006)

Assume H is a graph which arose from a graph G of p vertices and q edges by adding an arbitrary 2k-factor. If G is (a,1)-antimagic, then H is still (a,1)-antimagic.

Theorem (J. Ivančo, A. Semaničová, 2006)

Let G be a 2k-regular, $k \ge 2$, Hamiltonian graph of odd order p. Then G is (a,1)-antimagic.

(a, 1)-antimagic+2-fctor keep (a, 1)-antimagic

Figure : C_5 plus 2-factor and change to K_5

$$d_1(C_m \square C_n) = 0 \text{ if } p = mn \equiv 1 \pmod{2}$$

Lemma

When $p = mn \equiv 1 \pmod{2}$, then $d_1(C_m \square C_n) = 0$.

Because $C_m \square C_n$ have order p = mn and q = mn + nm = 2mn = 2p edges, and by Lemma of (a, 1)-necessary condition , then we get

$$2p(2p+1) = pa + \frac{(p-1)p}{2}$$

and implies $a=\frac{7p+5}{2}$, so p must be odd (that is, $p=mn\equiv 1(\bmod 2)$) and have a corollary as follows.

Corollary

$$d_1(C_m \square C_n) \ge 1$$
 if the order $p = mn \equiv 0 \pmod{4}$.
 $d_1(C_m \square C_n) = +\infty$ if the order $p = mn \equiv 2 \pmod{4}$.

$d_1(C_m\square C_n)=1 \text{ if } mn\equiv 0 \pmod{4}$

Lemma

When $p = mn \equiv 0 \pmod{4}$, then $d_1(C_m \square C_n) = 1$.

Sketch of proof:

- $d_1(C_m \Box C_n) \ge 1$
- the missing value $x = \frac{mn}{4} + 1, \frac{3mn}{4} + 1, \frac{5mn}{4} + 1, \frac{7mn}{4} + 1$. (claim: $d_1(C_m \square C_n) \le 1$)
- ullet Here we only choose the missing value $rac{mn}{4}+1$

• We find the Hamiltonian cycle with $(a = \frac{mn}{2} + 3, d = 1)$ -antimagic labeling, and apply (a, 1) + 2factor keep (a, 1) Lemma, hence done.

Conclusion of
$$d_1(C_m \boxtimes C_n) = d_1(C_m \square C_n)$$

Similarly, in the strong product $C_m \boxtimes C_n$ of two cycles C_m and C_n , we will use same method as $d_1(C_m \square C_n)$ to get corollary of $d_1(C_m \boxtimes C_n)$ as follows.

Corollary

$$d_1(\mathit{C}_m \square \mathit{C}_n) = d_1(\mathit{C}_m \boxtimes \mathit{C}_n) = \left\{ \begin{array}{ll} 0 & \text{, if } p = mn \equiv 1, 3 (\bmod 4) \\ 1 & \text{, if } p = mn \equiv 0 (\bmod 4) \\ +\infty & \text{, if } p = mn \equiv 2 (\bmod 4) \end{array} \right.$$

Outline

- Introduction and Background
- Main Result for Strong Products
- Main Result for Antimagic Deficiency of Graph Products
- Open Problems and Further Studies
- 5 References

Open Problems

- **①** To Determine antimagic-ness of strong product of graphs for $G \boxtimes H$, where G is an even regular graph and H is any graph.
- ② To Determine antimagic-ness of tensor product of graphs for $G \times H$, where G is an even regular graph and H is any graph (or a regular graph).
- **3** To Determine (a, d)-antimagic deficiency for other product graphs such as $P_m \square C_n$, $P_m \square P_n$, $P_m \boxtimes C_n$, $P_m \boxtimes P_n$ etc.
- **①** To Determine (a, d)-antimagic deficiency for general regular graphs.
- **5** To Determine (a, d)-antimagic deficiency for other graphs such as wheel graphs W_n , and fan graphs F_n .

Outline

- Introduction and Background
- 2 Main Result for Strong Products
- Main Result for Antimagic Deficiency of Graph Products
- Open Problems and Further Studies
- Seferences

References

- J. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics Sixteenth edition (2013), # DS6.
- Ying-Ren Chen, Chiang Lin, Two Edge Labelings in Graphs: Graph Decomposition and Antimagic Labeling (2012), Thesis p.60-67.
- Yu-Chang Liang, Xuding Zhu, Anti-magic labelling of Cartesian product of graphs (2012), *Theoretical Computer Science* 477 (2013) 1-5.
- Y. Cheng, A New Class of Antimagic Cartesian Product Graphs, *Discrete Mathematics*, 308 (24) (2008), pp. 6441V6448
- T.-M. Wang, Toroidal grids are anti-magic, Lecture Notes in Computer Science (LNCS) 3595 (2005) 671-679.
- T.-M. Wang and C. Hsiao, On anti-magic labeling for graph products, *Discrete Math.* 308 (2008) 3624-3633.

References

- D.W. Cranston, Regular bipartite graphs are antimagic, *J. Graph Theory* 60 (2009), 173-182.
- N. Hartsfield and G. Ringel, *Pearls in Graph Theory*, Academic Press, INC., Boston, 1990 (Revised version, 1994), pp. 108-109.
- N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are anti-magic, J. Graph Theory 47 (4) (2004) 297-309.
- D. Hefetz, Antimagic graphs via the combinatorial nullstellensatz, *J. Graph Theory* 50 (2005) 263-272.
- R. Bodendiek and G. Walther, On arithmetic antimagic edge labelings of graphs, *Mitt. Math. Ges. Hamburg*, 17 (1998) 85-99.
- J. Ivančo and A. Semaničova, Some constructions of supermagic graphs using antimagic graphs, *SUT J. Math.*, 42 (2006) 177-186.

Thank You for the Attention