Self-stabilizing Minimal Dominating Set Algorithms of Distributed Systems

& the Signed Star Domination Number of Cayley Graphs

Well Yu-Chieh Chiu (邱鈺傑)

Department of Applied Mathematics National Chiao Tung University Hsinchu, Taiwan

August 3, 2014

Outline

Introduction

- Basic graph definitions in domination
- Self-stabilization algorithms of distributed systems
- 2 Self-stabilizing MDS algorithms & the stableness
 - A (4n-2)-move self-stabilizing MDS algorithms
 - Four levels of stableness
 - Developing an SS MDS-silent algorithm in the distance-2 model
 - The signed star domination number of Cayley graphs
 - Introduction to signed star domination
 - The signed star domination number of the Cayley graphs

Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

Basic graph definitions

- G = (V, E) is simple, undirected, finite, and connected.
- processes $\rightarrow V$, n = |V|
- interconnections $\rightarrow E$, m = |E|
- Notations:
 - $u \sim v$: u and v are adjacent.
 - deg(v): degree of v.
 - N(v), N[v]: (closed) neighborhood of v.
 - d(u, v): distance from u to v.
 - G[S]: subgraph of G induced by S.
 - u is a *k*-neighbor of v if d(u, v) = k.
 - $N_k(v)$: *k*-neighborhood of *v*.

Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

Domination & Independence

- DS: dominating set.
- MDS: minimal dominating set.
- CDS: connected dominating set.
- IS: independent set.
- MIS: maximal independent set.
- (well known) An MIS of G is an MDS of G.

Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

MDS prob

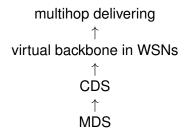
For a distributed system *G*, the *minimal dominating set problem* (MDS prob) is

- For each node $v \in V$, its neighbors are given as input.
- Each node $v \in V$ decides its decision d_v as output.
- The set $S = \{v \in V : d_v = 1\}$ must be an MDS.

Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

Applications

Messages routing in wireless sensor networks (WSNs)



Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

Distributed algo

A distributed algo is:

- Executed independently on each node.
- Defined by a collection of rules.
 - Rule: if precondition then action;
 - A rule is enabled if precondition evaluates true.
 - A node is privileged if one of rules is enabled.
- Execution of a rule (taking action) is called a move.

Example

Two simple rules that maintain an MIS *I*: R1: if $v \notin I$ having no neighbor in *I* then *v* joins *I*; R2: if $v \in I$ having a neighbor in *I* then *v* leaves *I*;

Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

Definition of Self-stabilization (SS)

Definition

An algo on a distributed system is called *self-stabilizing* (SS) if the following two properties hold:

- Starting from any illegitimate state, the distributed system reaches a legitimate state in a finite time without any external intervention.
- After convergence, the system remains in the set of legitimate state.

Example

The previous example (2 simple rules) is SS w.r.t. MIS.



Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

SS models

Execution models (daemons, schedulers):

- Central: choose only one
- Synchronous: choose all
- Distributed: choose arbitrary subset (practical)

Deterministic uniform SS algo assuming synchronous or *distributed daemons* are impossible for an *anonymous system* because the difficulty encountered in **symmetry breaking**.

\checkmark

Our algo. use an distributed daemon. We assume each node v has v.id.

Self-stabilizing MDS algorithms & the stableness The signed star domination number of Cayley graphs Basic graph definitions in domination Self-stabilization algorithms of distributed systems

SS graph algo

For finding a vertex subset (such as MIS/MDS prob), we define:

- The states of nodes are categorized into two types:
 - IN: If the node is considered in the set S with the desired property
 - OUT: If the node is considered not in S with the desired property
- Membership move: A move s.t. the state of the node changes from IN to OUT or from OUT to IN after the execution.

We use terms: IN nodes, OUT nodes, IN neighbors, etc.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Previous SS MDS algo

	stabilization time	daemon type
Hedetniemi et al. (2003)	$(2\mathbf{n}+1)\mathbf{n}$ moves	central
Xu et al. (2003)	4 <i>n</i> rounds	synchronous
Turau (2007)	9n moves	distributed
Goddard et al. (2008)	5 <i>n</i> moves	distributed

Main result

We present Well4n, a (4n - 2)-move SS MDS algo.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Well4n

In Well4n every node has state in 4 different values:

- IN (in the set),
- OUT1 (not in the MDS, having a unique IN neighbor),
- OUT2 (not in the MDS, having ≥ 1 IN neighbors),
- WAIT (not in the MDS, having no IN neighbor).

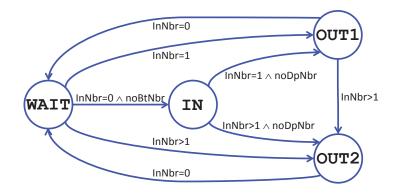
Definition

In Well4n a configuration is legitimate if the set of IN nodes form an MDS and for every OUT node, the state and the number of IN neighbors are consistent.

Notice that a legitimate configuration will not contain any WAIT not

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

State diagram of Well4n



A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Correctness & convergence

Theorem

The proposed algorithm Well4n is self-stabilizing under an unfair distributed daemon and it stabilizes after at most 4n - 2 moves with a minimal dominating set, where n is the number of nodes. Moreover, the bound 4n - 2 is tight.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Main result

- MDS-silent: [Turau, 2007] initialized with an MDS does not make any moves.
- MDS-covered: [Hedetniemi et al., 2003] can potentially produce any MDS.
- MDS-stable: (this thesis) not make any membership move when the system is initialized with an MDS.

Level	Feature	SS Algo
S_1 -stable	MDS	Turau3n
S_2 -stable	MDS-covered	Turau9n,Goddard5n,Well4n
S_3 -stable	MDS-stable	?
S_4 -stable	MDS-silent	none

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

MDS-silent: non-existence

Theorem

There exists no SS MDS-silent algo in the normal model.

Corollary

A SS MDS-covered algo in the normal model cannot have only one Boolean variable as its state variable.

Conjecture

There exists no SS MDS-stable algo in the normal model.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Four levels of stableness

- MDS-covered \Rightarrow MDS: by definition.
- MDS-stable ⇒ MDS-covered: initialized with any MDS, then system stabilizes with the same MDS.
- MDS-silent \Rightarrow MDS-stable: membership moves are moves.

Theorem

 S_{i+1} -stableness implies S_i -stableness, for $i \in \{1, 2, 3\}$.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Four levels of stableness

Stableness of SS DS algo

Reference	Output	Stableness	Required topology	Anonymous	Daemon	Model	Complexity
Hedetniemi et al. 2003-1	DS	S_1	Arbitrary	Yes	Central	Normal	$\leq n-1$ moves
Hedetniemi et al. 2003-2	MDS	S_2	Arbitrary	Yes	Central	Normal	$\leq (2n+1)n$ moves
Xu et al. 2003	MDS	S_2	Arbitrary	No	Synchronous	Normal	$\leq 4n$ rounds
Goddard et al. 2003,2005	MTDS	S_2	Arbitrary	No	Central	Normal	$\leq 2^n$ moves
Turau 2007	MDS	S_2	Arbitrary	No	Distributed	Normal	$\leq 9n$ moves
Goddard et al. 2008	MDS	S_2	Arbitrary	No	Distributed	Normal	$\leq 5n$ moves
Kamei et al. 2003-1	MkDS	S_1	Tree	Yes	Central	Normal	$\leq n^2$ moves
Kamei et al. 2003-2	MkDS	S_1	Tree	No	Distributed	Normal	$\leq 3(n-1)^2$ moves
Huang et al. 2008	M2DS	S_1	Arbitrary	Yes	Central	Normal	$\leq 10n + 1 \text{ moves}$
Kamei et al. 2005	MkDS	S_1	Arbitrary	No	Synchronous	Normal	$\leq n$ rounds
Huang et al. 2007	M2DS	S_1	Arbitrary	No	Distributed	Normal	
Gairing et al. 2004	MDS	S_4	Arbitrary	Yes	Central	Dist-2	$\leq 2n$ moves
Turau et al. 2012	MkDS	S_4	Arbitrary	Yes	Central	Dist-2	$\leq 2n$ moves
Belhoul et al. 2014	MTDS	S_4	Arbitrary	Yes	Central	Dist-2	$\leq 2n$ moves
Sec.3.2 in this thesis	MDS	S_2	Arbitrary	No	Distributed	Normal	$\leq 4n - 2 \text{ moves}$
Sec.5.3 in this thesis	MDS	S_4	Arbitrary	No	Distributed	Dist-2	$\leq 2n-1 \text{ moves}$

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Distance-2 model

Definition

A distributed system is in the *distance-2 model* if a node can instantaneously see the states of all nodes within distance two from it.

In the literatures, two *transformers* from distance-2 model to normal model are given.

Reference	Slowdown factor	Memory overhead
[Gairing et al. 2004]	$\times O(n^2m)$	$\times \Omega(\Delta \log n)$
[Turau 2012]	$\times O(m)$	$+O(\log n)$

The transformed algorithms are not MDS-silent.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Implementing the distance-2 model

We implement the distance-2 model on WSNs by using the *beacon messages*.

Each sensor node:

- Broadcast beacon message periodically.
- Construct/update neighbor list.
- Broadcast beacon message with neighbor list.
- After receiving neighbor lists from all neighboring nodes.
 - Construct/update 2-neighbor list by received neighbor lists.
 - If one rule is enabled, take action.
 - Go back to step 1.

A (4n - 2)-move self-stabilizing MDS algorithms Four levels of stableness Developing an SS MDS-silent algorithm in the distance-2 model

Correctness and convergence

Rules of Well2n

- S1: if $v.state = OUT \land nolnNbr(v) \land noBtNbr_2(v)$ then v.state := IN;
- S2: if $v.state = IN \land \neg nolnNbr(v) \land noDpNbr_2(v)$ then v.state := OUT:

// enter S

// leave S

Theorem

Algorithm Well2n is self-stabilizing and MDS-silent under an unfair distributed daemon in the distance-2 model. It stabilizes after at most 2n - 1 moves with a minimal dominating set, where n is the number of nodes.

Introduction to signed star domination The signed star domination number of the Cayley graphs

The signed star domination: definitions

- A function f : E(G) → {-1,1} is called a signed star dominating function (SSDF) on G if ∑_{e∈E_G(v)} f(e) ≥ 1 for every v ∈ V(G), where E_G(v) is the set of all edges incident to v.
- The signed star domination number of G is defined as $\gamma_{SS}(G) = \min\{\sum_{e \in E(G)} f(e) | f \text{ is an SSDF on } G\}.$
- [Xu 2005]
 - Initiated the study of $\gamma_{\mathcal{SS}}$ of graphs
 - $\left\lceil \frac{n}{2} \right\rceil \le \gamma_{SS}(G) \le 2n 4$
- [Atapour et al. 2010]
 - $\gamma_{SS}(K_n), \forall n$
 - 1-factorable
 - H-factorable

Introduction to signed star domination The signed star domination number of the Cayley graphs

Cayley graphs

- $Cay(\Gamma, \Omega)$: Cayley graph
 - Γ : a finite nontrivial group
 - Ω : a symmetric generating subset of nonidentity elements of Γ
- arrange the elements of Ω in the form:
 - $\{\sigma_1, \sigma_2, \ldots, \sigma_{2s}, \tau_1, \tau_2, \ldots, \tau_t\}$ satisfying
 - $\sigma_i^{-1} = \sigma_{i+s}, \ 1 \le i \le s \text{ and } \tau_j^{-1} = \tau_j, \ 1 \le j \le t.$
 - s 2-factors
 - t1-factors

$$E(G) = \left(\bigcup_{i=1}^{s} C_i\right) \cup \left(\bigcup_{j=1}^{t} M_j\right).$$

Introduction to signed star domination The signed star domination number of the Cayley graphs

Signed star domination of the Cayley graphs

Lemma

Let G be an r-regular graph. Then we have

$$\gamma_{SS}(G) \geq \begin{cases} \frac{n}{2} & \text{if } r \text{ is odd,} \\ n & \text{if } r \text{ is even,} \\ n+1 & \text{if } r \text{ is a multiple of } 4 \text{ and } n \text{ is odd.} \end{cases}$$

Theorem

Let Γ be a finite group of even order n, and let Ω be a symmetric generating set of Γ . If $|\Omega|$ is odd, then

$$\gamma_{SS}(Cay(\Gamma,\Omega)) = \frac{n}{2}$$

Introduction to signed star domination The signed star domination number of the Cayley graphs

Signed star domination of the Cayley graphs

Theorem

Let Γ be a finite group of order n, and let Ω be a symmetric generating set of Γ with even $|\Omega|$. If Ω has an odd number of distinct $\{\sigma, \sigma^{-1}\}$ pairs, or contains an element of even order, then

 $\gamma_{\mathcal{SS}}(\mathcal{C}\!\mathit{ay}(\Gamma,\Omega)) = \mathit{n}.$

Theorem

Let Γ be a finite cyclic group of odd order n. Assume that Ω is a symmetric subset containing a generator of Γ . If $|\Omega|$ is a multiple of 4, then

$$\gamma_{SS}(Cay(\Gamma, \Omega)) = n + 1.$$

Introduction to signed star domination The signed star domination number of the Cayley graphs

Signed star domination of the Cayley graphs

Example

$$\begin{aligned} \mathbb{Z}_{15} &= \{0, 1, \dots, 14\}, \\ \Omega &= \{3, 5, 10, 12\}, \\ \gamma_{SS}(Cay(\mathbb{Z}_{15}, \Omega)) &= 16 \end{aligned}$$

Conjecture

Let Γ be a finite group of order n, and let $\Omega = \{\sigma_1, \sigma_2, \dots, \sigma_{2s}\}$ be a symmetric generating set of Γ . If s is even and no element of Ω is of even order, then $\gamma_{SS}(Cay(\Gamma, \Omega)) = \begin{cases} n & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$

Introduction to signed star domination The signed star domination number of the Cayley graphs

Summary

Main results

- Provide a (4n-2)-move SS MDS-covered algo in normal model; bound is tight
- Prove an MDS-silent algo in normal model is impossible
- Develop an SS MDS-silent algo in dist-2 model

Future works

- Design an SS MDS-covered algo in normal model using fewer than 4n 2 moves.
- Prove an MDS-stable algo in normal model is impossible
- Multi-self-stabilization
- Complete the results on γ_{SS} of Cayley graphs

Introduction to signed star domination The signed star domination number of the Cayley graphs

Thank you for your attention!

