The Decycling Number on Graphs and Digraphs

Min-Yun Lien

Advisor: Hung-Lin Fu

Department of Applied Mathematics, National Chiao Tung University, Taiwan

2014-08-03

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Outline

- Decycling Problem and Applications
- Obecycling Number and Cycle Packing Number
- Decycling Number on Graphs
 - Path Product
- Decycling Number on Digraphs
 - Generalized Kautz Digraph
 - Generalized de Bruijn Digraphs
- Objective Work

イロト イヨト イヨト イヨト

Definition (Decycling Problem)

Given a directed/undirected graph G = (V, E), find a minimum set $D \subset V$ such that $G \setminus D$ is acyclic.

Has applications in

 Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)

ヘロト 人間 とくほ とくほとう

Definition (Decycling Problem)

Given a directed/undirected graph G = (V, E), find a minimum set $D \subset V$ such that $G \setminus D$ is acyclic.

Has applications in

 Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)
 Example: An operating system schedules different processes.

Process A is waiting for the resource on Process B so it can't release its own resource.

<ロト < 回 > < 回 > < 回 > .

Definition (Decycling Problem)

Given a directed/undirected graph G = (V, E), find a minimum set $D \subset V$ such that $G \setminus D$ is acyclic.

Has applications in

 Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)
 Example: An operating system schedules different processes.

Process A is waiting for no resource so it can release its resource.

<ロト < 回 > < 回 > < 回 > .

Definition (Decycling Problem)

Given a directed/undirected graph G = (V, E), find a minimum set $D \subset V$ such that $G \setminus D$ is acyclic.

Has applications in

 Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)
 Example: An operating system schedules different processes.

Deadlock:

Competing actions are each waiting for the other to finish, and thus neither ever does. **Solution:**

Remove some processes to **break such cycles** and put them in a waiting queue.

・ロト ・四ト ・ヨト

 Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)

<ロト < 回 > < 回 > < 回 > .

Э

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- ▷ Vertices are colored YES or NO.

・ロト ・聞 ト ・ ヨト ・ ヨト

Э

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- ▷ Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.

イロト イヨト イヨト イヨト

э

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
- Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.

イロト イヨト イヨト イヨト

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
- Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
- A decycling set could be the only choice!
 Example: A 4-regular graph (such as toroidal mesh network).

<ロト < 回 > < 回 > < 回 > < 回 >

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
- Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
- A decycling set could be the only choice!
 Example: A 4-regular graph (such as toroidal mesh network).

<ロト < 回 > < 回 > < 回 > < 回 >

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
- Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
- A decycling set could be the only choice!
 Example: A 4-regular graph (such as toroidal mesh network).

<ロト < 回 > < 回 > < 回 > < 回 >

э

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
- Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
- A decycling set could be the only choice!
 Example: A 4-regular graph (such as toroidal mesh network).

<ロト < 回 > < 回 > < 回 > < 回 >

э

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
- Vertices are colored YES or NO.
- Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
- Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
- A decycling set could be the only choice!
 Example: A 4-regular graph (such as toroidal mesh network).

NO vertices on the cycle remain NO. *Failed!*

イロト イヨト イヨト イヨト

- Constraint satisfaction problem (Dechter 1990).
- Bayesian inference in artificial intelligence (Bar-Yehuda et al. 1998).
- Converters' placement problem in optical networks (Kleinberg and Kumar 1999).
- VLSI chip design (Festa et al. 2000).

<ロト < 回 > < 回 > < 回 > < 回 >

E

Complexity

► Has been extensively studied.

 NP-hard Reduction from VERTEX COVER (R. Karp 1972). Even for planar graphs, bipartite graphs.

イロト イポト イモト イモト

Related Problems

- ► Is related or equivalent to
 - Feedback vertex set problem (Wang et al. 1985).
 - Hitting cycle problem

3

イロト イポト イモト イモト

Related Problems

- Is related or equivalent to
 - Feedback vertex set problem (Wang et al. 1985).
 - Hitting cycle problem
 - Maximum induced forest problem (Erdös, Saks and Sós 1986 Maximum induced trees in graphs).

イロト イヨト イヨト イヨト

Variations

► Has the following variations (survey Festa et al. 2000).

• Graph Bipartization Problem Find $D \subset E$ such that $G \setminus D$ has no odd cycle.

Variations

► Has the following variations (survey Festa et al. 2000).

- Graph Bipartization Problem Find $D \subset E$ such that $G \setminus D$ has no odd cycle.
- Weighted Decycling Problem

Seek a minimum-weight decycling set *D* where each vertex has a weight.

イロト イヨト イヨト イヨト

э

Variations

► Has the following variations (survey Festa et al. 2000).

- Graph Bipartization Problem Find $D \subset E$ such that $G \setminus D$ has no odd cycle.
- Weighted Decycling Problem

Seek a minimum-weight decycling set *D* where each vertex has a weight.

Loop Cut Set Problem

Given $A(C) \subseteq V(C)$ for each cycle *C* of *G*, find a minimum set *D* such that $D \cap A(C) \neq \emptyset$.

<ロト < 回 > < 回 > < 回 > < 回 >

э

▶ Is often compared with the following graph parameter.

• Cycle Packing Number $\nu(G)$: the maximum number of vertex-disjoint cycles of *G*.

$$\nu(G) = 1$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition: ∇(G) := the decycling number (minimum size of decycling set) of G.

- ▷ Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
- ▷ It is clear that $\nu(G) \leq \nabla(G)$.

イロト イポト イモト イモト

- \triangleright Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
- ▷ It is clear that $\nu(G) \leq \nabla(G)$.
- **Definition:** $\nabla(k) := \max{\{\nabla(G) : \nu(G) = k\}}.$

<ロト < 回 > < 回 > < 回 > .

æ

- \triangleright Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
- ▷ It is clear that $\nu(G) \leq \nabla(G)$.
- **Definition:** $\nabla(k) := \max{\{\nabla(G) : \nu(G) = k\}}.$
- ▷ $\nabla(1) \le 3$; $\nu(K_5) = 1$ and $\nabla(K_5) = 3$ (Bollobás 1964).
- $\triangleright \ \nabla(2) = 6 \text{ and } 9 \leq \nabla(3) \leq 12 \text{ (Voss 1968).}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▷ Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
- ▷ It is clear that $\nu(G) \leq \nabla(G)$.
- **Definition:** $\nabla(k) := \max{\{\nabla(G) : \nu(G) = k\}}.$
- ▷ $\nabla(1) \leq 3$; $\nu(K_5) = 1$ and $\nabla(K_5) = 3$ (Bollobás 1964).
- ▷ $\nabla(2) = 6$ and $9 \le \nabla(3) \le 12$ (Voss 1968).
- ▷ $c_1k \log k \le \nabla(k) \le c_2k \log k$ for some constants c_1 and c_2 (Erdös and Pósa 1964).

<ロト < 回 > < 回 > < 回 > < 回 >

• Consider planar graphs:

Э

イロト イポト イモト イモト

• Consider planar graphs:

Jones' Conjecture (Kloks, Lee and Liu 2002)

For every planar graph G, $\nabla(G) \leq 2\nu(G)$.

<ロト < 回 > < 回 > < 回 > < 回 >

• Consider planar graphs:

Jones' Conjecture (Kloks, Lee and Liu 2002)

For every planar graph G, $\nabla(G) \leq 2\nu(G)$.

Theorem (Chen, Fu and Shih 2010, TJM)

For every planar graph G, $\nabla(G) \leq 3\nu(G)$.

<ロト < 回 > < 回 > < 回 > < 回 >

Consider outerplanar graphs:

Theorem (Kloks, Lee and Liu 2002)

For every outerplanar graph G, $\nabla(G) \leq 2\nu(G)$.

An outerplanar graph G is called *lower-extremal* if ∇(G) = ν(G) and *upper-extremal* if ∇(G) = 2ν(G).

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Consider outerplanar graphs:

Theorem (Kloks, Lee and Liu 2002)

For every outerplanar graph G, $\nabla(G) \leq 2\nu(G)$.

- An outerplanar graph G is called *lower-extremal* if ∇(G) = ν(G) and *upper-extremal* if ∇(G) = 2ν(G).
- Upper-Extremal Results:
 - We define a *sun graph* S₃ as follows.

イロト イポト イヨト イヨト

•
$$\nabla(S_3) = 2 = 2\nu(S_3).$$

Theorem (Chang, Fu, Lien, 2011, JCO)

An outerplanar graph G is upper-extremal if and only if G is an S_3 -tree.

A graph is an S₃-tree of order t if it has exactly t vertex-disjoint S₃-subdivisions and every edge not on these S₃-subdivisions belongs to no cycle.

・ロト ・聞 ト ・ 国 ト ・ 国 トー

Theorem (Chang, Fu, Lien, 2011, JCO)

An outerplanar graph G is upper-extremal if and only if G is an S_3 -tree.

- A graph is an S₃-tree of order t if it has exactly t vertex-disjoint S₃-subdivisions and every edge not on these S₃-subdivisions belongs to no cycle.
- Example:

An S₃-tree G of order 3, where $\nabla(G) = 6 = 2\nu(G)$.

<ロト < 回 > < 回 > < 回 > < 回 >

Lower-Extremal Results:

The following graphs are NOT lower-extremal (∇(G) ≠ ν(G)):
 Sun graphs S_k with odd number k:

イロト イポト イモト イモト

•
$$\nabla(S_k) = \lceil \frac{k}{2} \rceil$$
 and $\nu(S_k) = \lfloor \frac{k}{2} \rfloor$.

Theorem (Chang, Fu, Lien, 2011, JCO)

For an outerplanar graph G, if G has no S_k -subdivision for all odd number k, then G is lower-extremal.

・ロト ・聞 ト ・ 国 ト ・ 国 トー

Lower Bound of Undirected Graphs

Lemma (Beineke, 1997, JGT)

If *G* is a connected graph with *p* vertices (*p* > 2), *q* edges, and maximum degree Δ , then $\nabla(G) \ge \frac{q-p+1}{\Delta-1}$.

< ロ > < 部 > < き > < き > -

Cartesian Product

Definition $(G \Box H)$

$$V(G\Box H) = \{(u, v) | u \in V(G) \text{ and } v \in V(H)\}$$

$$E(G\Box H) = \{(u, v)(u', v') | u = u' \text{ and } (v, v') \in E(H) \text{ or } (u, u') \in E(G) \text{ and } v = v'\}$$

ヘロン 人間 とくほどくほどう

Cartesian Product

Definition $(G \Box H)$

$$V(G\Box H) = \{(u, v) | u \in V(G) \text{ and } v \in V(H)\}$$

$$E(G\Box H) = \{(u, v)(u', v') | u = u' \text{ and } (v, v') \in E(H) \text{ or } (u, u') \in E(G) \text{ and } v = v'\}$$

Figure : $P_9 \Box P_{11}$

Decycling number of $C_m \Box C_n$

Theorem (Pike, Zou, 2005, SIDMA)

$$\nabla(C_m \Box C_n) = \begin{cases} \left\lceil \frac{3n}{2} \right\rceil & \text{if } m = 4, \\ \left\lceil \frac{3m}{2} \right\rceil & \text{if } n = 4, \\ \left\lceil \frac{mn+2}{3} \right\rceil & \text{otherwise}. \end{cases}$$

<ロト < 回 > < 回 > < 回 > .

Э

Lower bound

Theorem (Luccio, 1998, IPL)

If $m, n \geq 2$, then $\nabla(P_m \Box P_n) \geq \left\lceil \frac{(m-1)(n-1)+1}{3} \right\rceil$.

Theorem (Madelaine and Stewart, 2008, DISC)

In Table, A: $\nabla(P_m \Box P_n) = F_{m,n}$, B: $\nabla(P_m \Box P_n) \leq F_{m,n} + 1$, C: $\nabla(P_m \Box P_n) \leq F_{m,n} + 2$, where $F_{m,n} = \left\lceil \frac{(m-1)(n-1)+1}{3} \right\rceil$.

イロト イポト イヨト イヨト

New Lower bound

Proposition (Observation)

If $m \ge 5$ and $f_{m,n} = \frac{(m-1)(n-1)+1}{3}$ is an integer, then each decycling set *S* of size $f_{m,n}$ satisfies the following two properties: (1) *S* contains exactly one vertex of degree 3 and contains no vertex of degree 2; and (2) *S* induces a subgraph of $P_m \Box P_n$ with no edges.

イロト イポト イヨト イヨト

New Lower bound

Proposition (Observation)

If $m \ge 5$ and $f_{m,n} = \frac{(m-1)(n-1)+1}{3}$ is an integer, then each decycling set *S* of size $f_{m,n}$ satisfies the following two properties: (1) *S* contains exactly one vertex of degree 3 and contains no vertex of degree 2; and (2) *S* induces a subgraph of $P_m \Box P_n$ with no edges.

Theorem (Lien, Fu, Shih, 2014, DMAA)

If $m \ge 5$, mn is even and $f_{m,n}$ is an integer, then $\nabla(P_m \Box P_n) \ge f_{m,n} + 1 = F_{m,n} + 1$, where $f_{m,n} = \frac{(m-1)(n-1)+1}{3}$.

Proof.

イロト イヨト イヨト イヨト

Proof.

Suppose not.

イロト イヨト イヨト イヨト

= 990

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

Let
$$v_{i,1} \in S, 2 \leq i \leq \lfloor \frac{m}{2} \rfloor$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

Let
$$v_{i,1} \in S, 2 \leq i \leq \lfloor \frac{m}{2} \rfloor$$
.
 $v_{m-1,2} \in S$ and $v_{m-1,3} \notin S$.

イロト イポト イヨト イヨト 二日

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

Let
$$v_{i,1} \in S, 2 \leq i \leq \lfloor \frac{m}{2} \rfloor$$
.
 $v_{m-1,2} \in S$ and $v_{m-1,3} \notin S$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

Let
$$v_{i,1} \in S, 2 \le i \le \lfloor \frac{m}{2} \rfloor$$
.
 $v_{m-1,2} \in S$ and $v_{m-1,3} \notin S$.
 $v_{m-1,2}, v_{m-1,4}, \cdots, v_{m-1,n-1} \in S$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

Let $v_{i,1} \in S, 2 \leq i \leq \lfloor \frac{m}{2} \rfloor$. $v_{m-1,2} \in S$ and $v_{m-1,3} \notin S$. $v_{m-1,2}, v_{m-1,4}, \cdots, v_{m-1,n-1} \in S$. Hence, n-1 is even and n is odd.

Proof.

Suppose not.

Assume that $\nabla(P_m \Box P_n) = f_{m,n} = F_{m,n}$ and *S* is a decycling set with size $f_{m,n}$.

By above Proposition, we may let $v_{i,1}$ be the vertex of *S* with degree 3 where $2 \le i \le \lfloor \frac{m}{2} \rfloor$.

Similarly,

 $v_{m-3,n-1}, v_{m-5,n-1}, \cdots, v_{2,n-1} \in S.$ Thus, *m* is odd, a contradiction.

イロト イポト イヨト イヨト 二日

New Lower bound

Corollary

For $m \ge 5$, if $m \equiv 0 \pmod{6}$ and $n \equiv 2 \pmod{3}$ or $(m,n) \equiv (3,2) \pmod{6}$, then $\nabla(P_m \Box P_n) \ge F_{m,n} + 1$.

æ

イロト イヨト イヨト イヨト

New Lower bound

Corollary

For
$$m \ge 5$$
, if $m \equiv 0 \pmod{6}$ and $n \equiv 2 \pmod{3}$ or $(m, n) \equiv (3, 2) \pmod{6}$, then $\nabla(P_m \Box P_n) \ge F_{m,n} + 1$

Theorem

For $m \ge 5$, if $(m, n) \equiv (0, 2), (0, 5), (3, 2), (2, 0), (5, 0), (2, 3) \pmod{6}$, then $\nabla(P_m \Box P_n) = F_{m,n} + 1$.

New Lower bound

Corollary

For
$$m \ge 5$$
, if $m \equiv 0 \pmod{6}$ and $n \equiv 2 \pmod{3}$ or $(m, n) \equiv (3, 2) \pmod{6}$, then $\nabla(P_m \Box P_n) \ge F_{m,n} + 1$.

Theorem

For $m \ge 5$, if $(m, n) \equiv (0, 2), (0, 5), (3, 2), (2, 0), (5, 0), (2, 3) \pmod{6}$, then $\nabla(P_m \Box P_n) = F_{m,n} + 1$.

Theorem (Lien, Fu, Shih, 2014, DMAA)

For $m, n \geq 6$, $\nabla(P_m \Box P_n) \leq F_{m,n} + 1$.

ヘロン 人間 とくほどくほどう

Notation:

Let *v* be a vertex in a digraph. The *out-neighborhood* or *successor set* $N^+(v)$ is $\{x \in V(G) : v \to x\}$.

For $S \subseteq V(G)$, $N^+(S) = \bigcup_{v \in S} N^+(v)$.

Notation:

Let *v* be a vertex in a digraph. The *out-neighborhood* or *successor set* $N^+(v)$ is $\{x \in V(G) : v \to x\}$.

For $S \subseteq V(G)$, $N^+(S) = \bigcup_{v \in S} N^+(v)$.

Construction Method

Lemma

Let *S* be a set of vertices in a digraph *G*. Then *S* is a decycling set of *G* if and only if we can find a sequence of subsets of V(G), $S = S_0, S_1, \dots, S_t = V(G)$ such that (1) $S_i \subseteq S_{i+1}$; and (2) $N^+(S_{i+1} \setminus S_i) \subseteq S_i$ for $i = 0, 1, \dots, t-1$.

Example 1.

Э

Example 1.

イロト イヨト イヨト イヨト

Example 1.

イロト イヨト イヨト イヨト

Example 1.

イロト イヨト イヨト イヨト

Example 1.

There is a directed cycle (1, 3, 5).

Э

Example 2.

イロト イヨト イヨト イヨト

æ

45/56

Example 2.

We have $S_3 = V(G)$.

Example 2.

<ロト < 回 > < 回 > < 回 > .

de Bruijn Digraphs and Kautz Digraphs

Definition (de Bruijn digraph B(d, n))

 $V(B(d,n)) = \{x_1x_2 \cdots x_n : x_i \in \{0, 1, \cdots, d-1\}, 1 \le i \le n\}.$ Edge: $X = x_1x_2 \cdots x_n \longrightarrow Y = x_2x_3 \cdots x_n \alpha$ where $\alpha \in \{0, 1, \cdots, d-1\}.$

イロト イポト イヨト イヨト 二日

de Bruijn Digraphs and Kautz Digraphs

Definition (de Bruijn digraph B(d, n))

$$V(B(d,n)) = \{x_1x_2\cdots x_n : x_i \in \{0, 1, \cdots, d-1\}, 1 \le i \le n\}.$$

Edge: $X = x_1x_2\cdots x_n \longrightarrow Y = x_2x_3\cdots x_n\alpha$ where $\alpha \in \{0, 1, \cdots, d-1\}.$

Definition (Kautz digraph K(d, n))

$$V(K(d, n)) = \{x_1x_2 \cdots x_n : x_i \in \{0, 1, \cdots, d\}, 1 \le i \le n \text{ and } x_i \ne x_{i+1}, 1 \le i \le n-1\}.$$

$$Edge: X = x_1x_2 \cdots x_n \longrightarrow Y = x_2x_3 \cdots x_n \alpha \text{ where } \alpha \in \{0, 1, \cdots, d\}.$$

Remark: $K(d, n) \subseteq B(d + 1, n)$.

・ロト ・四ト ・ヨト ・ ヨト

E

Generalized de Bruijn Digraphs Generalized Kautz Digraphs

Definition (Generalized de Bruijn digraph $G_B(d, n)$)

 $V(G_B(d,n)) = \{0, 1, \cdots, n-1\}.$ $E(G_B(d,n)) = \{(x, y) | y \equiv dx + i \pmod{n}, 0 \le i \le d-1\}.$

Generalized de Bruijn Digraphs Generalized Kautz Digraphs

Definition (Generalized de Bruijn digraph $G_B(d, n)$)

 $V(G_B(d,n)) = \{0, 1, \cdots, n-1\}.$ $E(G_B(d,n)) = \{(x, y) | y \equiv dx + i \pmod{n}, 0 \le i \le d-1\}.$

Definition (Generalized Kautz digraph $G_K(d, n)$)

$$V(G_K(d,n)) = \{0, 1, \cdots, n-1\}.$$

$$E(G_K(d,n)) = \{(x,y) | y \equiv -dx - i \pmod{n}, 1 \le i \le d\}.$$

Decycling number of Generalized Kautz Digraphs

Theorem (Lien, Kuo and Fu)

$$\nabla(G_k(d,n)) \leq \begin{cases} \frac{2}{9}n + 3t + 1, \\ \text{where } n \equiv t \pmod{36}, \text{ for } d = 2, \\ \frac{n}{3} + \frac{9}{4}t + 6 \\ \text{where } n \equiv t \pmod{36}, \text{ for } d = 3, \\ (\frac{1}{2} - \frac{d-1}{2d^2})n + \frac{d}{2}(d - t + 5) - 2, \\ \text{where } n \equiv t \pmod{d+1}, \text{ for } d \geq 4. \end{cases}$$

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Decycling number of Generalized de Bruijn Digraphs

Theorem (Lien, Kuo and Fu)

$$\nabla(G_B(d,n)) \le \frac{d+1}{2d}n + 2(d-1).$$

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Objective Work

- For a planar graph G, $\nabla(G) \stackrel{?}{\leq} 2\nu(G)$ (Jones' conjecture 2002).
- For a planar graph G, $\nabla(G) \stackrel{?}{\leq} |V(G)|/2$ (Albertson and Berman 1979).
- For a bipartite planar graph *G*, $\nabla(G) \stackrel{?}{\leq} 3|V(G)|/8$ (Albertson and Berman 1979).
- We have $\lceil \frac{(m-1)(n-1)+1}{3} \rceil \leq \nabla(P_m \Box P_n) \leq \lceil \frac{(m-1)(n-1)+1}{3} \rceil + 1$. Find the exact value of $\nabla(P_m \Box P_n)$.
- Find the lower bound of directed graphs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

- Albertson MO, Berman DM (1979) A conjecture on planar graphs, Bondy JA, Murty USR, Graph theory and related topics 357.
- H. Chang, H. L. Fu and M. Y. Lien, The decycling number of outerplanar graphs, J. Comb. Optim. 25 (2013)
- Erdös P, Saks M, Sós VT (1986) Maximum induced trees in graphs. J Combin Theory Ser B 41:61-79.
- Bau S, Beineke LW, Vandell RC (1998) Decycling snakes. Congr Numer 134:79-87.
- Bodlaender HL (1994) On disjoint cycles. Int J Found Comput Sci 5:59-68.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Erdös P, Saks M, Sós VT (1986) Maximum induced trees in graphs. J Combin Theory Ser B 41:61-79.

- Festa P, Pardalos PM, Resende MGC (2000) Feedback set problems, Handbook of Combinatorial Optimization, Du D-Z, Pardalos PM, Eds, Kluwer Academic Publishers, Supplement A, pp 209-259.
- Kloks T, Lee C-M, Liu J (2002) New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. in Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2002) Springer-Verlag, 2573:282-295.
- M. Y. Lien, H. L. Fu and C. H. Shih, The decycling number of $P_m \Box P_n$, Discrete Math., Alg. and Appl. DOI: 10.1142/S1793830914500335, 2014.
- F. R. Madelaine and I. A. Stewart, Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies, Discrete Math., 308 (2008) 4144-4164.

イロト イヨト イヨト イヨト

- D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math., 19 (2005) 651-663.
- X. Xu, Y. Cao, J-M. Xu and Y. Wu, Feedback numbers of de Bruijn digraphs, Computers and Mathematics with Application, 59 (2010) 716-723.
- F. R. Madelaine and I. A. Stewart, Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies, Discrete Math., 308 (2008) 4144-4164.
- D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math., 19 (2005) 651-663.
- X. Xu, Y. Cao, J-M. Xu and Y. Wu, Feedback numbers of de Bruijn digraphs, Computers and Mathematics with Application, 59 (2010) 716-723.

イロト イヨト イヨト イヨト

Thank you for your attention!

Э