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Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph G = (V,E), find a minimum set
D ⊂ V such that G \ D is acyclic.

◮ Has applications in

Deadlock prevention in operating systems (Wang et al.
1985; Silberschatz et al. 2003)
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D ⊂ V such that G \ D is acyclic.

◮ Has applications in

Deadlock prevention in operating systems (Wang et al.
1985; Silberschatz et al. 2003)
Example: An operating system schedules different
processes.

A B

C

Process A is waiting for the resource on Process B 

so it can’t release its own resource.
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Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph G = (V,E), find a minimum set
D ⊂ V such that G \ D is acyclic.

◮ Has applications in

Deadlock prevention in operating systems (Wang et al.
1985; Silberschatz et al. 2003)
Example: An operating system schedules different
processes.

B A

C

D

Process A is waiting for no resource 

so it can release its resource.
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Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph G = (V,E), find a minimum set
D ⊂ V such that G \ D is acyclic.

◮ Has applications in

Deadlock prevention in operating systems (Wang et al.
1985; Silberschatz et al. 2003)
Example: An operating system schedules different
processes.

B A

C

Deadlock:

Competing actions are each waiting for 

the other to finish, and thus neither ever does.

Solution:

Remove some processes to break such cycles

and put them in a waiting queue.
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Applications

Monopolies in synchronous distributed systems (Peleg
1998; Peleg 2002)
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Applications

Monopolies in synchronous distributed systems (Peleg
1998; Peleg 2002)

⊲ Vertices are colored YES or NO.
⊲ Monotone synchronous system: at each step a NO vertex

changes to YES if more than half of its neighbors are YES.
⊲ Problem: Set the minimum number of vertices YES at

beginning such that all vertices become YES eventually.
⊲ A decycling set could be the only choice!

Example: A 4-regular graph (such as toroidal mesh
network).

YES vertices

NO vertices on the cycle remain NO.

Failed!
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Applications

Constraint satisfaction problem (Dechter 1990).

Bayesian inference in artificial intelligence (Bar-Yehuda et
al. 1998).

Converters’ placement problem in optical networks
(Kleinberg and Kumar 1999).

VLSI chip design (Festa et al. 2000).
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Complexity

◮ Has been extensively studied.

NP-hard
Reduction from VERTEX COVER (R. Karp 1972).
Even for planar graphs, bipartite graphs.
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Related Problems

◮ Is related or equivalent to

Feedback vertex set problem (Wang et al. 1985).
Hitting cycle problem
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Related Problems

◮ Is related or equivalent to

Feedback vertex set problem (Wang et al. 1985).
Hitting cycle problem

Maximum induced forest problem
(Erdös, Saks and Sós 1986 Maximum induced trees in
graphs).
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Variations

◮ Has the following variations (survey Festa et al. 2000).

Graph Bipartization Problem
Find D ⊂ E such that G \ D has no odd cycle.
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Variations

◮ Has the following variations (survey Festa et al. 2000).

Graph Bipartization Problem
Find D ⊂ E such that G \ D has no odd cycle.
Weighted Decycling Problem
Seek a minimum-weight decycling set D where each vertex
has a weight.
Loop Cut Set Problem
Given A(C) ⊆ V(C) for each cycle C of G, find a minimum
set D such that D ∩ A(C) 6= ∅.
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Relations with Cycle Packing Number

◮ Is often compared with the following graph parameter.

Cycle Packing Number ν(G): the maximum number of
vertex-disjoint cycles of G.

1)(G

Definition: ∇(G) := the decycling number (minimum size
of decycling set) of G.
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Relations with Cycle Packing Number

⊲ Dirac and Gallai had interest in the relations between ν(G)
and ∇(G).

⊲ It is clear that ν(G) ≤ ∇(G).
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and ∇(G).

⊲ It is clear that ν(G) ≤ ∇(G).

Definition: ∇(k) := max{∇(G) : ν(G) = k}.
⊲ ∇(1) ≤ 3; ν(K5) = 1 and ∇(K5) = 3 (Bollobás 1964).
⊲ ∇(2) = 6 and 9 ≤ ∇(3) ≤ 12 (Voss 1968).
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⊲ Dirac and Gallai had interest in the relations between ν(G)
and ∇(G).

⊲ It is clear that ν(G) ≤ ∇(G).

Definition: ∇(k) := max{∇(G) : ν(G) = k}.
⊲ ∇(1) ≤ 3; ν(K5) = 1 and ∇(K5) = 3 (Bollobás 1964).
⊲ ∇(2) = 6 and 9 ≤ ∇(3) ≤ 12 (Voss 1968).
⊲ c1k log k ≤ ∇(k) ≤ c2k log k for some constants c1 and c2

(Erdös and Pósa 1964).
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Relations with Cycle Packing Number

Consider planar graphs:
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Relations with Cycle Packing Number

Consider planar graphs:

Jones’ Conjecture (Kloks, Lee and Liu 2002)

For every planar graph G, ∇(G) ≤ 2ν(G).

Theorem (Chen, Fu and Shih 2010, TJM)

For every planar graph G, ∇(G) ≤ 3ν(G).
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Decycling number of outerplanar graphs

Consider outerplanar graphs:

Theorem (Kloks, Lee and Liu 2002)

For every outerplanar graph G, ∇(G) ≤ 2ν(G).

◮ An outerplanar graph G is called lower-extremal if ∇(G) = ν(G)
and upper-extremal if ∇(G) = 2ν(G).
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Decycling number of outerplanar graphs

Consider outerplanar graphs:

Theorem (Kloks, Lee and Liu 2002)

For every outerplanar graph G, ∇(G) ≤ 2ν(G).

◮ An outerplanar graph G is called lower-extremal if ∇(G) = ν(G)
and upper-extremal if ∇(G) = 2ν(G).

◮ Upper-Extremal Results:

We define a sun graph S3 as follows.

S∇(S3) = 2 = 2ν(S3).
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Decycling number of outerplanar graphs

Theorem (Chang, Fu, Lien, 2011, JCO)

An outerplanar graph G is upper-extremal if and only if G is an S3-tree.

A graph is an S3-tree of order t if it has exactly t
vertex-disjoint S3-subdivisions and every edge not on these
S3-subdivisions belongs to no cycle.
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Decycling number of outerplanar graphs

Theorem (Chang, Fu, Lien, 2011, JCO)

An outerplanar graph G is upper-extremal if and only if G is an S3-tree.

A graph is an S3-tree of order t if it has exactly t
vertex-disjoint S3-subdivisions and every edge not on these
S3-subdivisions belongs to no cycle.
Example:

An S3-tree G of order 3, 

where ).(26)( GG
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Decycling number of outerplanar graphs

◮ Lower-Extremal Results:

The following graphs are NOT lower-extremal
(∇(G) 6= ν(G)):
Sun graphs Sk with odd number k:

S3 S5

∇(Sk) = ⌈ k
2⌉ and ν(Sk) = ⌊ k

2⌋.
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Decycling number of outerplanar graphs

Theorem (Chang, Fu, Lien, 2011, JCO)

For an outerplanar graph G, if G has no Sk-subdivision for all odd
number k, then G is lower-extremal.
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Decycling number of Graphs

Lower Bound of Undirected Graphs

Lemma (Beineke, 1997, JGT)

If G is a connected graph with p vertices (p > 2), q edges, and
maximum degree ∆, then ∇(G) ≥ q−p+1

∆−1 .
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Cartesian Product

Definition (G✷H)

V(G✷H) = {(u, v)|u ∈ V(G) and v ∈ V(H)}
E(G✷H) = {(u, v)(u′, v′)|u = u′ and (v, v′) ∈ E(H) or (u, u′) ∈
E(G) and v = v′}
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Cartesian Product

Definition (G✷H)

V(G✷H) = {(u, v)|u ∈ V(G) and v ∈ V(H)}
E(G✷H) = {(u, v)(u′, v′)|u = u′ and (v, v′) ∈ E(H) or (u, u′) ∈
E(G) and v = v′}

Figure : P9✷P11
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Decycling number of Cm✷Cn

Theorem (Pike, Zou, 2005, SIDMA)

∇(Cm✷Cn) =







⌈ 3n
2 ⌉ if m = 4,

⌈ 3m
2 ⌉ if n = 4,

⌈mn+2
3 ⌉ otherwise .
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Decycling number of Path Product Pm✷Pn

Lower bound

Theorem (Luccio, 1998, IPL)

If m, n ≥ 2, then ∇(Pm✷Pn) ≥
⌈

(m−1)(n−1)+1
3

⌉

.

Min-Yun Lien 25/56



Decycling number of Path Product Pm✷Pn

Theorem (Madelaine and Stewart, 2008, DISC)

Table :

In Table, A: ∇(Pm✷Pn) = Fm,n, B: ∇(Pm✷Pn) ≤ Fm,n + 1, C:

∇(Pm✷Pn) ≤ Fm,n + 2, where Fm,n =
⌈

(m−1)(n−1)+1
3

⌉

.
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Decycling number of Path Product Pm✷Pn

New Lower bound

Proposition (Observation)

If m ≥ 5 and fm,n = (m−1)(n−1)+1
3 is an integer, then each decycling set

S of size fm,n satisfies the following two properties:
(1) S contains exactly one vertex of degree 3 and contains no vertex
of degree 2; and
(2) S induces a subgraph of Pm✷Pn with no edges.
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New Lower bound

Proposition (Observation)

If m ≥ 5 and fm,n = (m−1)(n−1)+1
3 is an integer, then each decycling set

S of size fm,n satisfies the following two properties:
(1) S contains exactly one vertex of degree 3 and contains no vertex
of degree 2; and
(2) S induces a subgraph of Pm✷Pn with no edges.

Theorem (Lien, Fu, Shih, 2014, DMAA)

If m ≥ 5, mn is even and fm,n is an integer, then
∇(Pm✷Pn) ≥ fm,n + 1 = Fm,n + 1,where fm,n = (m−1)(n−1)+1

3 .
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Decycling number of Path Product Pm✷Pn

Proof.
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Decycling number of Path Product Pm✷Pn

Proof.

Suppose not.

Assume that ∇(Pm✷Pn) = fm,n = Fm,n and S is a decycling set
with size fm,n.

By above Proposition, we may let vi,1 be the vertex of S with
degree 3 where 2 ≤ i ≤

⌊

m
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⌋
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Decycling number of Path Product Pm✷Pn

Proof.

Suppose not.

Assume that ∇(Pm✷Pn) = fm,n = Fm,n and S is a decycling set
with size fm,n.

By above Proposition, we may let vi,1 be the vertex of S with
degree 3 where 2 ≤ i ≤

⌊

m
2

⌋

.

Let vi,1 ∈ S, 2 ≤ i ≤ ⌊m
2 ⌋.

vm−1,2 ∈ S and vm−1,3 /∈ S.
vm−1,2, vm−1,4, · · · , vm−1,n−1 ∈ S.
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Decycling number of Path Product Pm✷Pn

Proof.

Suppose not.

Assume that ∇(Pm✷Pn) = fm,n = Fm,n and S is a decycling set
with size fm,n.

By above Proposition, we may let vi,1 be the vertex of S with
degree 3 where 2 ≤ i ≤

⌊

m
2

⌋

.

Let vi,1 ∈ S, 2 ≤ i ≤ ⌊m
2 ⌋.

vm−1,2 ∈ S and vm−1,3 /∈ S.
vm−1,2, vm−1,4, · · · , vm−1,n−1 ∈ S.
Hence, n− 1 is even and n is odd.
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Decycling number of Path Product Pm✷Pn

Proof.

Suppose not.

Assume that ∇(Pm✷Pn) = fm,n = Fm,n and S is a decycling set
with size fm,n.

By above Proposition, we may let vi,1 be the vertex of S with
degree 3 where 2 ≤ i ≤

⌊

m
2

⌋

.

Similarly,
vm−3,n−1, vm−5,n−1, · · · , v2,n−1 ∈ S.
Thus, m is odd, a contradiction.
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Decycling number of Path Product Pm✷Pn

New Lower bound

Corollary

For m ≥ 5, if m ≡ 0 (mod 6) and n ≡ 2 (mod 3) or
(m, n) ≡ (3, 2) (mod 6), then ∇(Pm✷Pn) ≥ Fm,n + 1.
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New Lower bound

Corollary

For m ≥ 5, if m ≡ 0 (mod 6) and n ≡ 2 (mod 3) or
(m, n) ≡ (3, 2) (mod 6), then ∇(Pm✷Pn) ≥ Fm,n + 1.

Theorem

For m ≥ 5, if (m, n) ≡ (0, 2), (0, 5), (3, 2), (2, 0), (5, 0), (2, 3) (mod 6),
then ∇(Pm✷Pn) = Fm,n + 1.
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Decycling number of Path Product Pm✷Pn

New Lower bound

Corollary

For m ≥ 5, if m ≡ 0 (mod 6) and n ≡ 2 (mod 3) or
(m, n) ≡ (3, 2) (mod 6), then ∇(Pm✷Pn) ≥ Fm,n + 1.

Theorem

For m ≥ 5, if (m, n) ≡ (0, 2), (0, 5), (3, 2), (2, 0), (5, 0), (2, 3) (mod 6),
then ∇(Pm✷Pn) = Fm,n + 1.

Theorem (Lien, Fu, Shih, 2014, DMAA)

For m, n ≥ 6, ∇(Pm✷Pn) ≤ Fm,n + 1.
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Decycling number of Digraphs

5

13

0

4

2
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Decycling number of Digraphs

Notation:
Let v be a vertex in a digraph. The out-neighborhood or
successor set N+(v) is {x ∈ V(G) : v → x}.

For S ⊆ V(G), N+(S) = ∪v∈SN+(v).
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Decycling number of Digraphs

Notation:
Let v be a vertex in a digraph. The out-neighborhood or
successor set N+(v) is {x ∈ V(G) : v → x}.

For S ⊆ V(G), N+(S) = ∪v∈SN+(v).

Construction Method

Lemma

Let S be a set of vertices in a digraph G. Then S is a decycling set of
G if and only if we can find a sequence of subsets of V(G),
S = S0, S1, · · · , St = V(G) such that
(1) Si ⊆ Si+1; and
(2) N+(Si+1 \ Si) ⊆ Si for i = 0, 1, · · · , t − 1.
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Decycling number of Digraphs

Example 1.
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Decycling number of Digraphs

Example 1.
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There is a directed cycle (1, 3, 5).
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Decycling number of Digraphs

Example 2.
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Decycling number of Digraphs

Example 2.

5

13

0
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5 3

1

4

1S 2S
3S

We have S3 = V(G).
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Decycling number of Digraphs

Example 2.
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de Bruijn Digraphs and Kautz Digraphs

Definition (de Bruijn digraph B(d, n))

V(B(d, n)) = {x1x2 · · · xn : xi ∈ {0, 1, · · · , d − 1}, 1 ≤ i ≤ n}.
Edge : X = x1x2 · · · xn −→ Y = x2x3 · · · xnα where α ∈ {0, 1, · · · , d − 1}.
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de Bruijn Digraphs and Kautz Digraphs

Definition (de Bruijn digraph B(d, n))

V(B(d, n)) = {x1x2 · · · xn : xi ∈ {0, 1, · · · , d − 1}, 1 ≤ i ≤ n}.
Edge : X = x1x2 · · · xn −→ Y = x2x3 · · · xnα where α ∈ {0, 1, · · · , d − 1}.

Definition (Kautz digraph K(d, n))

V(K(d, n)) = {x1x2 · · · xn : xi ∈ {0, 1, · · · , d}, 1 ≤ i ≤ n and xi 6= xi+1, 1 ≤
i ≤ n − 1}.
Edge : X = x1x2 · · · xn −→ Y = x2x3 · · · xnα where α ∈ {0, 1, · · · , d}.

Remark: K(d, n) ⊆ B(d + 1, n).
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Generalized de Bruijn Digraphs Generalized Kautz
Digraphs

Definition (Generalized de Bruijn digraph GB(d, n))

V(GB(d, n)) = {0, 1, · · · , n − 1}.
E(GB(d, n)) = {(x, y)|y ≡ dx + i (mod n), 0 ≤ i ≤ d − 1}.
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Generalized de Bruijn Digraphs Generalized Kautz
Digraphs

Definition (Generalized de Bruijn digraph GB(d, n))

V(GB(d, n)) = {0, 1, · · · , n − 1}.
E(GB(d, n)) = {(x, y)|y ≡ dx + i (mod n), 0 ≤ i ≤ d − 1}.

Definition (Generalized Kautz digraph GK(d, n))

V(GK(d, n)) = {0, 1, · · · , n − 1}.
E(GK(d, n)) = {(x, y)|y ≡ −dx − i (mod n), 1 ≤ i ≤ d}.
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Decycling number of Generalized Kautz Digraphs

Theorem (Lien, Kuo and Fu)

∇(Gk(d, n)) ≤































2
9n + 3t + 1,
where n ≡ t (mod 36), for d = 2,

n
3 +

9
4 t + 6

where n ≡ t (mod 36), for d = 3,
( 1

2 −
d−1
2d2 )n + d

2(d − t + 5)− 2,
where n ≡ t (mod d + 1), for d ≥ 4.
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Decycling number of Generalized de Bruijn Digraphs

Theorem (Lien, Kuo and Fu)

∇(GB(d, n)) ≤ d+1
2d n + 2(d − 1).
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Objective Work

For a planar graph G, ∇(G)
?
≤ 2ν(G) (Jones’ conjecture 2002).

For a planar graph G, ∇(G)
?
≤ |V(G)|/2 (Albertson and Berman

1979).

For a bipartite planar graph G, ∇(G)
?
≤ 3|V(G)|/8 (Albertson and

Berman 1979).

We have ⌈ (m−1)(n−1)+1
3 ⌉ ≤ ∇(Pm✷Pn) ≤ ⌈ (m−1)(n−1)+1

3 ⌉+ 1. Find
the exact value of ∇(Pm✷Pn).

Find the lower bound of directed graphs.
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Thank you for your attention!
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