The Decycling Number on Graphs and Digraphs

Min-Yun Lien

Advisor: Hung-Lin Fu

Department of Applied Mathematics, National Chiao Tung University, Taiwan

Outline

(1) Decycling Problem and Applications
(2) Decycling Number and Cycle Packing Number
(3) Decycling Number on Graphs

- Path Product
(9) Decycling Number on Digraphs
- Generalized Kautz Digraph
- Generalized de Bruijn Digraphs
(0) Objective Work

Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph $G=(V, E)$, find a minimum set $D \subset V$ such that $G \backslash D$ is acyclic.

- Has applications in
- Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)

Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph $G=(V, E)$, find a minimum set $D \subset V$ such that $G \backslash D$ is acyclic.

- Has applications in
- Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)
Example: An operating system schedules different processes.

Process A is waiting for the resource on Process B so it can't release its own resource.

Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph $G=(V, E)$, find a minimum set $D \subset V$ such that $G \backslash D$ is acyclic.

- Has applications in
- Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)
Example: An operating system schedules different processes.

Process A is waiting for no resource so it can release its resource.

Definition and Applications

Definition (Decycling Problem)

Given a directed/undirected graph $G=(V, E)$, find a minimum set $D \subset V$ such that $G \backslash D$ is acyclic.

- Has applications in
- Deadlock prevention in operating systems (Wang et al. 1985; Silberschatz et al. 2003)
Example: An operating system schedules different processes.

Deadlock:
Competing actions are each waiting for the other to finish, and thus neither ever does. Solution:
Remove some processes to break such cycles and put them in a waiting queue.

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
\triangleright Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
\triangleright Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
\triangleright A decycling set could be the only choice! Example: A 4-regular graph (such as toroidal mesh network).

[^0]
Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
\triangleright Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
\triangleright A decycling set could be the only choice! Example: A 4-regular graph (such as toroidal mesh network).

Decycling Set

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
\triangleright Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
\triangleright A decycling set could be the only choice! Example: A 4-regular graph (such as toroidal mesh network).

Decycling Set

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
\triangleright Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
\triangleright A decycling set could be the only choice! Example: A 4-regular graph (such as toroidal mesh network).

Decycling Set

Applications

- Monopolies in synchronous distributed systems (Peleg 1998; Peleg 2002)
\triangleright Vertices are colored YES or NO.
\triangleright Monotone synchronous system: at each step a NO vertex changes to YES if more than half of its neighbors are YES.
\triangleright Problem: Set the minimum number of vertices YES at beginning such that all vertices become YES eventually.
\triangleright A decycling set could be the only choice! Example: A 4-regular graph (such as toroidal mesh network).

NO vertices on the cycle remain NO . Failed!

[^1]
Applications

- Constraint satisfaction problem (Dechter 1990).
- Bayesian inference in artificial intelligence (Bar-Yehuda et al. 1998).
- Converters' placement problem in optical networks (Kleinberg and Kumar 1999).
- VLSI chip design (Festa et al. 2000).

Complexity

- Has been extensively studied.
- NP-hard

Reduction from VERTEX COVER (R. Karp 1972). Even for planar graphs, bipartite graphs.

Related Problems

- Is related or equivalent to
- Feedback vertex set problem (Wang et al. 1985).
- Hitting cycle problem

Related Problems

- Is related or equivalent to
- Feedback vertex set problem (Wang et al. 1985).
- Hitting cycle problem
- Maximum induced forest problem
(Erdös, Saks and Sós 1986 Maximum induced trees in graphs).

Variations

- Has the following variations (survey Festa et al. 2000).
- Graph Bipartization Problem Find $D \subset E$ such that $G \backslash D$ has no odd cycle.

Variations

- Has the following variations (survey Festa et al. 2000).
- Graph Bipartization Problem Find $D \subset E$ such that $G \backslash D$ has no odd cycle.
- Weighted Decycling Problem Seek a minimum-weight decycling set D where each vertex has a weight.

Variations

- Has the following variations (survey Festa et al. 2000).
- Graph Bipartization Problem Find $D \subset E$ such that $G \backslash D$ has no odd cycle.
- Weighted Decycling Problem

Seek a minimum-weight decycling set D where each vertex has a weight.

- Loop Cut Set Problem Given $A(C) \subseteq V(C)$ for each cycle C of G, find a minimum set D such that $D \cap A(C) \neq \emptyset$.

Relations with Cycle Packing Number

- Is often compared with the following graph parameter.
- Cycle Packing Number $\nu(G)$: the maximum number of vertex-disjoint cycles of G.

- Definition: $\nabla(G):=$ the decycling number (minimum size of decycling set) of G.

Relations with Cycle Packing Number

\triangleright Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
\triangleright It is clear that $\nu(G) \leq \nabla(G)$.

Relations with Cycle Packing Number

\triangleright Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
\triangleright It is clear that $\nu(G) \leq \nabla(G)$.

- Definition: $\nabla(k):=\max \{\nabla(G): \nu(G)=k\}$.

Relations with Cycle Packing Number

\triangleright Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
\triangleright It is clear that $\nu(G) \leq \nabla(G)$.

- Definition: $\nabla(k):=\max \{\nabla(G): \nu(G)=k\}$.
$\triangleright \nabla(1) \leq 3 ; \nu\left(K_{5}\right)=1$ and $\nabla\left(K_{5}\right)=3$ (Bollobás 1964).
$\triangleright \nabla(2)=6$ and $9 \leq \nabla(3) \leq 12$ (Voss 1968).

Relations with Cycle Packing Number

\triangleright Dirac and Gallai had interest in the relations between $\nu(G)$ and $\nabla(G)$.
\triangleright It is clear that $\nu(G) \leq \nabla(G)$.

- Definition: $\nabla(k):=\max \{\nabla(G): \nu(G)=k\}$.
$\triangleright \nabla(1) \leq 3 ; \nu\left(K_{5}\right)=1$ and $\nabla\left(K_{5}\right)=3$ (Bollobás 1964).
$\triangleright \nabla(2)=6$ and $9 \leq \nabla(3) \leq 12$ (Voss 1968).
$\triangleright c_{1} k \log k \leq \nabla(k) \leq c_{2} k \log k$ for some constants c_{1} and c_{2} (Erdös and Pósa 1964).

Relations with Cycle Packing Number

- Consider planar graphs:

Relations with Cycle Packing Number

- Consider planar graphs:

Jones' Conjecture (Kloks, Lee and Liu 2002)
For every planar graph $G, \nabla(G) \leq 2 \nu(G)$.

Relations with Cycle Packing Number

- Consider planar graphs:

Jones' Conjecture (Kloks, Lee and Liu 2002)

For every planar graph $G, \nabla(G) \leq 2 \nu(G)$.

Theorem (Chen, Fu and Shih 2010, TJM)
For every planar graph $G, \nabla(G) \leq 3 \nu(G)$.

Decycling number of outerplanar graphs

Consider outerplanar graphs:

Theorem (Kloks, Lee and Liu 2002)

For every outerplanar graph $G, \nabla(G) \leq 2 \nu(G)$.

- An outerplanar graph G is called lower-extremal if $\nabla(G)=\nu(G)$ and upper-extremal if $\nabla(G)=2 \nu(G)$.

Decycling number of outerplanar graphs

Consider outerplanar graphs:

Theorem (Kloks, Lee and Liu 2002)

For every outerplanar graph $G, \nabla(G) \leq 2 \nu(G)$.

- An outerplanar graph G is called lower-extremal if $\nabla(G)=\nu(G)$ and upper-extremal if $\nabla(G)=2 \nu(G)$.
- Upper-Extremal Results:
- We define a sun graph S_{3} as follows.

- $\nabla\left(S_{3}\right)=2=2 \nu\left(S_{3}\right)$.

Decycling number of outerplanar graphs

Theorem (Chang, Fu, Lien, 2011, JCO)

An outerplanar graph G is upper-extremal if and only if G is an S_{3}-tree.

- A graph is an S_{3}-tree of order t if it has exactly t vertex-disjoint S_{3}-subdivisions and every edge not on these S_{3}-subdivisions belongs to no cycle.

Decycling number of outerplanar graphs

Theorem (Chang, Fu, Lien, 2011, JCO)

An outerplanar graph G is upper-extremal if and only if G is an S_{3}-tree.

- A graph is an S_{3}-tree of order t if it has exactly t vertex-disjoint S_{3}-subdivisions and every edge not on these S_{3}-subdivisions belongs to no cycle.
- Example:

> An S_{3}-tree G of order 3 , where $\nabla(G)=6=2 v(G)$.

Decycling number of outerplanar graphs

- Lower-Extremal Results:
- The following graphs are NOT lower-extremal $(\nabla(G) \neq \nu(G))$:
Sun graphs S_{k} with odd number k :

S_{3}

S5

- $\nabla\left(S_{k}\right)=\left\lceil\frac{k}{2}\right\rceil$ and $\nu\left(S_{k}\right)=\left\lfloor\frac{k}{2}\right\rfloor$.

Decycling number of outerplanar graphs

Theorem (Chang, Fu, Lien, 2011, JCO)

For an outerplanar graph G, if G has no S_{k}-subdivision for all odd number k, then G is lower-extremal.

Decycling number of Graphs

Lower Bound of Undirected Graphs

Lemma (Beineke, 1997, JGT)

If G is a connected graph with p vertices ($p>2$), q edges, and maximum degree Δ, then $\nabla(G) \geq \frac{q-p+1}{\Delta-1}$.

Cartesian Product

Definition $(G \square H)$

$V(G \square H)=\{(u, v) \mid u \in V(G)$ and $v \in V(H)\}$
$E(G \square H)=\left\{(u, v)\left(u^{\prime}, v^{\prime}\right) \mid u=u^{\prime}\right.$ and $\left(v, v^{\prime}\right) \in E(H)$ or $\left(u, u^{\prime}\right) \in$ $E(G)$ and $\left.v=v^{\prime}\right\}$

Cartesian Product

Definition $(G \square H)$

$V(G \square H)=\{(u, v) \mid u \in V(G)$ and $v \in V(H)\}$
$E(G \square H)=\left\{(u, v)\left(u^{\prime}, v^{\prime}\right) \mid u=u^{\prime}\right.$ and $\left(v, v^{\prime}\right) \in E(H)$ or $\left(u, u^{\prime}\right) \in$ $E(G)$ and $\left.v=v^{\prime}\right\}$

Figure : $P_{9} \square P_{11}$

Decycling number of $C_{m} \square C_{n}$

Theorem (Pike, Zou, 2005, SIDMA)

$$
\nabla\left(C_{m} \square C_{n}\right)= \begin{cases}\left\lceil\frac{3 n}{2}\right\rceil & \text { if } m=4, \\ \left\lceil\frac{3 m}{2}\right\rceil & \text { if } n=4, \\ \left\lceil\frac{m n+2}{3}\right\rceil & \text { otherwise } .\end{cases}
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Lower bound

Theorem (Luccio, 1998, IPL)

$$
\text { If } m, n \geq 2 \text {, then } \nabla\left(P_{m} \square P_{n}\right) \geq\left\lceil\frac{(m-1)(n-1)+1}{3}\right\rceil \text {. }
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Theorem (Madelaine and Stewart, 2008, DISC)

Table :

m	0	1	2	3	4	5
0	B	A	B	B	A	B
1	A	A	A	A	A	A
2	B	A	B	B	A	B
3	B	A	B	B	A	C
4	A	A	A	A	A	A
5	B	A	B	C	A	C

: increasing the lower bound in this paper
decreasing the upper bound in this paper

In Table, A: $\nabla\left(P_{m} \square P_{n}\right)=F_{m, n}, B: \nabla\left(P_{m} \square P_{n}\right) \leq F_{m, n}+1, C$:
$\nabla\left(P_{m} \square P_{n}\right) \leq F_{m, n}+2$, where $F_{m, n}=\left\lceil\frac{(m-1)(n-1)+1}{3}\right\rceil$.

Decycling number of Path Product $P_{m} \square P_{n}$

New Lower bound

Proposition (Observation)

If $m \geq 5$ and $f_{m, n}=\frac{(m-1)(n-1)+1}{3}$ is an integer, then each decycling set S of size $f_{m, n}$ satisfies the following two properties:
(1) S contains exactly one vertex of degree 3 and contains no vertex of degree 2; and
(2) S induces a subgraph of $P_{m} \square P_{n}$ with no edges.

Decycling number of Path Product $P_{m} \square P_{n}$

New Lower bound

Proposition (Observation)

If $m \geq 5$ and $f_{m, n}=\frac{(m-1)(n-1)+1}{3}$ is an integer, then each decycling set S of size $f_{m, n}$ satisfies the following two properties:
(1) S contains exactly one vertex of degree 3 and contains no vertex of degree 2; and
(2) S induces a subgraph of $P_{m} \square P_{n}$ with no edges.

Theorem (Lien, Fu, Shih, 2014, DMAA)

If $m \geq 5, m n$ is even and $f_{m, n}$ is an integer, then
$\nabla\left(P_{m} \square P_{n}\right) \geq f_{m, n}+1=F_{m, n}+1$, where $_{m, n}=\frac{(m-1)(n-1)+1}{3}$.

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

$$
\text { Let } v_{i, 1} \in S, 2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor \text {. }
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

$$
\begin{aligned}
& \text { Let } v_{i, 1} \in S, 2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor . \\
& v_{m-1,2} \in S \text { and } v_{m-1,3} \notin S .
\end{aligned}
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

$$
\begin{aligned}
& \text { Let } v_{i, 1} \in S, 2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor . \\
& v_{m-1,2} \in S \text { and } v_{m-1,3} \notin S .
\end{aligned}
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

$$
\begin{aligned}
& \text { Let } v_{i, 1} \in S, 2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor . \\
& v_{m-1,2} \in S \text { and } v_{m-1,3} \notin S . \\
& v_{m-1,2}, v_{m-1,4}, \cdots, v_{m-1, n-1} \in S .
\end{aligned}
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

$$
\begin{aligned}
& \text { Let } v_{i, 1} \in S, 2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor \\
& v_{m-1,2} \in S \text { and } v_{m-1,3} \notin S . \\
& v_{m-1,2}, v_{m-1,4}, \cdots, v_{m-1, n-1} \in S .
\end{aligned}
$$

$$
\text { Hence, } n-1 \text { is even and } n \text { is odd. }
$$

Decycling number of Path Product $P_{m} \square P_{n}$

Proof.

Suppose not.
Assume that $\nabla\left(P_{m} \square P_{n}\right)=f_{m, n}=F_{m, n}$ and S is a decycling set with size $f_{m, n}$.

By above Proposition, we may let $v_{i, 1}$ be the vertex of S with degree 3 where $2 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$.

Similarly,
$v_{m-3, n-1}, v_{m-5, n-1}, \cdots, v_{2, n-1} \in S$.
Thus, m is odd, a contradiction.

Decycling number of Path Product $P_{m} \square P_{n}$

New Lower bound

Corollary

For $m \geq 5$, if $m \equiv 0(\bmod 6)$ and $n \equiv 2(\bmod 3)$ or $(m, n) \equiv(3,2)(\bmod 6)$, then $\nabla\left(P_{m} \square P_{n}\right) \geq F_{m, n}+1$.

Decycling number of Path Product $P_{m} \square P_{n}$

New Lower bound

Corollary

For $m \geq 5$, if $m \equiv 0(\bmod 6)$ and $n \equiv 2(\bmod 3)$ or $(m, n) \equiv(3,2)(\bmod 6)$, then $\nabla\left(P_{m} \square P_{n}\right) \geq F_{m, n}+1$.

Theorem

For $m \geq 5$, if $(m, n) \equiv(0,2),(0,5),(3,2),(2,0),(5,0),(2,3)(\bmod 6)$, then $\nabla\left(P_{m} \square P_{n}\right)=F_{m, n}+1$.

Decycling number of Path Product $P_{m} \square P_{n}$

New Lower bound

Corollary

For $m \geq 5$, if $m \equiv 0(\bmod 6)$ and $n \equiv 2(\bmod 3)$ or $(m, n) \equiv(3,2)(\bmod 6)$, then $\nabla\left(P_{m} \square P_{n}\right) \geq F_{m, n}+1$.

Theorem

For $m \geq 5$, if $(m, n) \equiv(0,2),(0,5),(3,2),(2,0),(5,0),(2,3)(\bmod 6)$, then $\nabla\left(P_{m} \square P_{n}\right)=F_{m, n}+1$.

Theorem (Lien, Fu, Shih, 2014, DMAA)

For $m, n \geq 6, \nabla\left(P_{m} \square P_{n}\right) \leq F_{m, n}+1$.

Decycling number of Digraphs

Decycling number of Digraphs

Notation:
Let v be a vertex in a digraph. The out-neighborhood or successor set $N^{+}(v)$ is $\{x \in V(G): v \rightarrow x\}$.

For $S \subseteq V(G), N^{+}(S)=\cup_{v \in S} N^{+}(v)$.

Decycling number of Digraphs

Notation:
Let v be a vertex in a digraph. The out-neighborhood or successor set $N^{+}(v)$ is $\{x \in V(G): v \rightarrow x\}$.
For $S \subseteq V(G), N^{+}(S)=\cup_{v \in S} N^{+}(v)$.
Construction Method

Lemma

Let S be a set of vertices in a digraph G. Then S is a decycling set of G if and only if we can find a sequence of subsets of $V(G)$,
$S=S_{0}, S_{1}, \cdots, S_{t}=V(G)$ such that
(1) $S_{i} \subseteq S_{i+1}$; and
(2) $N^{+}\left(S_{i+1} \backslash S_{i}\right) \subseteq S_{i}$ for $i=0,1, \cdots, t-1$.

Decycling number of Digraphs

Example 1.

Decycling number of Digraphs

Example 1.

Decycling number of Digraphs

Example 1.

(0)

Decycling number of Digraphs

Example 1.

(0) (2)

Decycling number of Digraphs

Example 1.

There is a directed cycle $(1,3,5)$.

Decycling number of Digraphs

Example 2.

We have $S_{3}=V(G)$.

Decycling number of Digraphs

Example 2.

de Bruijn Digraphs and Kautz Digraphs

Definition (de Brujin digraph $B(d, n)$)

$V(B(d, n))=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1, \cdots, d-1\}, 1 \leq i \leq n\right\}$.
Edge : $X=x_{1} x_{2} \cdots x_{n} \longrightarrow Y=x_{2} x_{3} \cdots x_{n} \alpha$ where $\alpha \in\{0,1, \cdots, d-1\}$.

de Bruijn Digraphs and Kautz Digraphs

Definition (de Brujn digraph $B(d, n)$)

$V(B(d, n))=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1, \cdots, d-1\}, 1 \leq i \leq n\right\}$.
Edge : $X=x_{1} x_{2} \cdots x_{n} \longrightarrow Y=x_{2} x_{3} \cdots x_{n} \alpha$ where $\alpha \in\{0,1, \cdots, d-1\}$.

Definition (Kautz digraph $K(d, n)$)

$V(K(d, n))=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1, \cdots, d\}, 1 \leq i \leq n\right.$ and $x_{i} \neq x_{i+1}, 1 \leq$ $i \leq n-1\}$.
Edge : $X=x_{1} x_{2} \cdots x_{n} \longrightarrow Y=x_{2} x_{3} \cdots x_{n} \alpha$ where $\alpha \in\{0,1, \cdots, d\}$.

Remark: $K(d, n) \subseteq B(d+1, n)$.

Generalized de Bruijn Digraphs Generalized Kautz Digraphs

> Definition (Generalized de Bruijn digraph $\left.G_{B}(d, n)\right)$
> $V\left(G_{B}(d, n)\right)=\{0,1, \cdots, n-1\}$.
> $E\left(G_{B}(d, n)\right)=\{(x, y) \mid y \equiv d x+i(\bmod n), 0 \leq i \leq d-1\}$.

Generalized de Bruijn Digraphs Generalized Kautz Digraphs

Definition (Generalized de Bruijn digraph $G_{B}(d, n)$)

$V\left(G_{B}(d, n)\right)=\{0,1, \cdots, n-1\}$.
$E\left(G_{B}(d, n)\right)=\{(x, y) \mid y \equiv d x+i(\bmod n), 0 \leq i \leq d-1\}$.

Definition (Generalized Kautz digraph $G_{K}(d, n)$)

$$
\begin{aligned}
& V\left(G_{K}(d, n)\right)=\{0,1, \cdots, n-1\} . \\
& E\left(G_{K}(d, n)\right)=\{(x, y) \mid y \equiv-d x-i(\bmod n), 1 \leq i \leq d\} .
\end{aligned}
$$

Decycling number of Generalized Kautz Digraphs

Theorem (Lien, Kuo and Fu)

$$
\nabla\left(G_{k}(d, n)\right) \leq\left\{\begin{array}{l}
\frac{2}{9} n+3 t+1, \\
\text { wheren } n t \quad(\bmod 36), \text { for } d=2, \\
\frac{n}{3}+\frac{9}{4} t+6 \\
\text { wheren } t \quad(\bmod 36), \text { for } d=3, \\
\left(\frac{1}{2}-\frac{d-1}{2 d^{2}}\right) n+\frac{d}{2}(d-t+5)-2, \\
\text { where } n \equiv t \quad(\bmod d+1), \text { for } d \geq 4
\end{array}\right.
$$

Decycling number of Generalized de Bruijn Digraphs

Theorem (Lien, Kuo and Fu)

$\nabla\left(G_{B}(d, n)\right) \leq \frac{d+1}{2 d} n+2(d-1)$.

Objective Work

- For a planar graph $G, \nabla(G) \stackrel{?}{\leq} 2 \nu(G)$ (Jones' conjecture 2002).
- For a planar graph $G, \nabla(G) \stackrel{?}{\leq}|V(G)| / 2$ (Albertson and Berman 1979).
- For a bipartite planar graph $G, \nabla(G) \stackrel{?}{\leq} 3|V(G)| / 8$ (Albertson and Berman 1979).
- We have $\left\lceil\frac{(m-1)(n-1)+1}{3}\right\rceil \leq \nabla\left(P_{m} \square P_{n}\right) \leq\left\lceil\frac{(m-1)(n-1)+1}{3}\right\rceil+1$. Find the exact value of $\nabla\left(P_{m} \square P_{n}\right)$.
- Find the lower bound of directed graphs.

References

Albertson MO, Berman DM (1979) A conjecture on planar graphs, Bondy JA, Murty USR, Graph theory and related topics 357.

E H. Chang, H. L. Fu and M. Y. Lien, The decycling number of outerplanar graphs, J. Comb. Optim. 25 (2013)

E Erdös P, Saks M, Sós VT (1986) Maximum induced trees in graphs. J Combin Theory Ser B 41:61-79.

凅 Bau S, Beineke LW, Vandell RC (1998) Decycling snakes. Congr Numer 134:79-87.

E Bodlaender HL (1994) On disjoint cycles. Int J Found Comput Sci 5:59-68.

Erdös P, Saks M, Sós VT (1986) Maximum induced trees in graphs. J Combin Theory Ser B 41:61-79.

R Festa P, Pardalos PM, Resende MGC (2000) Feedback set problems, Handbook of Combinatorial Optimization, Du D-Z, Pardalos PM, Eds, Kluwer Academic Publishers, Supplement A, pp 209-259.
(in Kloks T, Lee C-M, Liu J (2002) New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. in Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2002) Springer-Verlag, 2573:282-295.
(in. M. Lien, H. L. Fu and C. H. Shih, The decycling number of $P_{m} \square P_{n}$, Discrete Math., Alg. and Appl. DOI:
10.1142/S1793830914500335, 2014.
F. R. Madelaine and I. A. Stewart, Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies, Discrete Math., 308 (2008) 4144-4164.
(in D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math., 19 (2005) 651-663.

E X. Xu, Y. Cao, J-M. Xu and Y. Wu, Feedback numbers of de Bruijn digraphs, Computers and Mathematics with Application, 59 (2010) 716-723.

R F. R. Madelaine and I. A. Stewart, Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies, Discrete Math., 308 (2008) 4144-4164.
D. D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math., 19 (2005) 651-663.

固 X. Xu, Y. Cao, J-M. Xu and Y. Wu, Feedback numbers of de Bruijn digraphs, Computers and Mathematics with Application, 59 (2010) 716-723.

Thank you for your attention!

[^0]: Decycling Set

[^1]: YES vertices

