A General Framework for Central Limit Theorems of Additive Shape Parameters in Random Digital Trees (joint work with M. Fuchs)

Chung-Kuei Lee

Department of Applied Mathematics
National Chiao Tung University

2014 Symposium for Young Combiantorialists
Taipei, Aug. 3, 2014

Members in the Digital Tree Family (I)

We are mainly dealing with Tries, PATRICIA Tries, Digital Search Trees (DSTs) and Bucket Digital Search Trees (b-DSTs).

- Tries:
- Invented by R. de la Briandais and named by E. Fredkin.
- Have many advantages over other already-existing data structures such as binary search trees.
- Applied in all kinds of areas in computer science.

Members in the Digital Tree Family (I)

We are mainly dealing with Tries, PATRICIA Tries, Digital Search Trees (DSTs) and Bucket Digital Search Trees (b-DSTs).

- Tries:
- Invented by R. de la Briandais and named by E. Fredkin.
- Have many advantages over other already-existing data structures such as binary search trees.
- Applied in all kinds of areas in computer science.
- PATRICIA Tries:
- Invented by D. R. Morrison in 1986.
- An variant of Tries which avoid one way branching of internal nodes.
- Applied in many areas, especially in IP routing.

Members in the Digital Tree Family (II)

- Digital Search Trees:
- Invented by E. Coffman and J. Eve in 1970.
- Attracted considerable attention due to their close connection to the famous Lempel-Ziv compression scheme.
- The data are stored in the nodes while the data only appears in the leaves of tries.

Members in the Digital Tree Family (II)

- Digital Search Trees:
- Invented by E. Coffman and J. Eve in 1970.
- Attracted considerable attention due to their close connection to the famous Lempel-Ziv compression scheme.
- The data are stored in the nodes while the data only appears in the leaves of tries.
- Bucket Digital Search Trees:
- A generalization of DSTs.
- Each node can store b keys. Origin DSTs are b-DSTS with $b=1$.
- Related to many practical algorithms, such as memory management in UNIX.

Construction of Tries

$S_{1}=0011010 \ldots$
$S_{2}=0000110 \ldots$
$S_{3}=1110110 \ldots$
$S_{4}=1000100 \ldots$
$S_{5}=0000010 \ldots$
$S_{6}=0110101 \ldots$
$S_{7}=1000011 \ldots$
$S_{8}=0010011 \ldots$

Construction of DSTs

$S_{1}=0011010 \ldots$
$S_{2}=0000110 \ldots$
$S_{3}=1110110 \ldots$
$S_{4}=1000100 \ldots$
$S_{5}=0000010 \ldots$
$S_{6}=0110101 \ldots$
$S_{7}=1000011 \ldots$
$S_{8}=0010011 \ldots$

Construction of b-DSTs

$$
\begin{aligned}
& S_{1}=0011010 \ldots \\
& S_{2}=0000110 \ldots \\
& S_{3}=1110110 \ldots \\
& S_{4}=1000100 \ldots \\
& S_{5}=0000010 \ldots \\
& S_{6}=0110101 \ldots \\
& S_{7}=1000011 \ldots \\
& S_{8}=0010011 \ldots
\end{aligned}
$$

Figure: A bucket digital search tree built from the keys S_{1}, \ldots, S_{8} with bucket size $b=2$.

Random Model

Random Model: Bernoulli model.

Bits of keys: i.i.d. Bernoulli random variables
Bianry case: The i-th key will be of the form

$$
\begin{gathered}
A_{i, 1}, A_{i, 2}, \ldots, A_{i, l}, \ldots \\
\text { where } \mathbb{P}\left(A_{i, j}=0\right)=p \text { and } \mathbb{P}\left(A_{i, j}=1\right)=q=1-p .
\end{gathered}
$$

Random Model

Random Model: Bernoulli model.
Bits of keys: i.i.d. Bernoulli random variables
Bianry case: The i-th key will be of the form

$$
A_{i, 1}, A_{i, 2}, \ldots, A_{i, l}, \ldots
$$

where $\mathbb{P}\left(A_{i, j}=0\right)=p$ and $\mathbb{P}\left(A_{i, j}=1\right)=q=1-p$.
m-ary case: The i-th key is of the same form with $A_{i, j} \in \mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ for some alphabet \mathcal{A} of the size m .

$$
\mathbb{P}\left(A_{i, j}=a_{k}\right)=p_{k} \text { with }
$$

$$
\sum_{i=1}^{m} p_{i}=1 \quad \text { and } 0 \leq p_{i} \leq 1 \text { for all } i
$$

Additive Shape Parameters

Additive Shape Parameters in Tries A sequence of random variables satisfying the recurrence

$$
X_{n} \stackrel{d}{=} \sum_{r=1}^{m} X_{B_{n}^{(r)}}^{(r)}+T_{n}, \quad\left(n \geq n_{0}\right)
$$

where $n_{0} \geq 0$ is an integer, $X_{n}, X_{n}^{(1)}, \ldots, X_{n}^{(m)},\left(B_{n}^{(1)}, \ldots, B_{n}^{(m)}\right), T_{n}$ are independent and $B_{n}^{(r)}$ is the multinomial distribution.
Additive Shape Parameters in (Bucket) DSTs A sequence of random variables satisfying the recurrence

$$
X_{n+b} \stackrel{d}{=} \sum_{r=1}^{m} X_{B_{n}^{(r)}}^{(r)}+T_{n+b}, \quad\left(n \geq n_{0}\right)
$$

where $b \in \mathbb{N}$.

Contraction Method (I)

We start with a sequence of d-dimensional random vectors $\left\{Y_{n}\right\}_{n \geq 0}$ satisfying the distributional recursion

$$
Y_{n} \stackrel{d}{=} \sum_{r=1}^{k} A_{r}(n) Y_{I_{r}^{(n)}}^{(r)}+b_{n}, \quad n \geq n_{0},
$$

where
(1) $I_{r}^{(n)}$ is a vector of random cardinalities with $I_{r}^{(n)} \in\{0, \ldots, n\}$

2 $\left(A_{1}(n), \ldots, A_{k}(n), b_{n}, I_{1}^{(n)}, \ldots, I_{k}^{(n)}\right),\left(Y_{n}^{(1)}\right), \ldots,\left(Y_{n}^{(k)}\right),\left(Y_{n}\right)$ are independent,
(3) $A_{1}(n), \ldots, A_{k}(n)$ are random $d \times d$ matrices,
(4) b_{n} is a random d-dimensional vector,
(5) $\left(Y_{n}^{(1)}\right), \ldots,\left(Y_{n}^{(k)}\right)$ are identically distributed as $\left(Y_{n}\right)$.

Contraction Method (II)

Next, we normalize the Y_{n} by

$$
X_{n}:=C_{n}^{-1 / 2}\left(Y_{n}-M_{n}\right), \quad n \geq n_{0}
$$

where $M_{n} \in \mathbb{R}^{d}$ and C_{n} are suitably chosen positive-definite square matrices. The normalized quantities X_{n} then satisfy the modified recurrence

$$
X_{n} \stackrel{d}{=} \sum_{r=1}^{k} A_{r}(n) X_{I_{r}^{(n)}}^{(r)}+b^{(n)}, \quad n \geq n_{0},
$$

with

$$
A_{r}^{(n)}:=C_{n}^{-1 / 2} A_{r}(n) C_{I_{r}^{(n)}}^{1 / 2}, \quad b^{(n)}:=C_{n}^{-1 / 2}\left(b_{n}-M_{n}+\sum_{r=1}^{k} A_{r}(n) M_{I_{r}^{(n)}}\right)
$$

and the independence relations are as for Y_{n}. The normalized quantities will converge in ζ_{s} under suitable conditions.

Contraction Method (III)

Theorem

Let $\left(X_{n}\right)$ be normalized as before and s-integrable and $0<s \leq 3$. Assume that as $n \rightarrow \infty$,
(1) $\left(A_{1}^{(n)}, \ldots, A_{k}^{(n)}, b_{n}\right) \xrightarrow{\mathcal{L}_{s}}\left(A_{1}^{*}, \ldots, A_{k}^{*}, b^{*}\right)$,
(2) $\mathbb{E} \sum_{r=1}^{k}\left\|A_{r}^{*}\right\|_{o p}^{s}<1$, and
(3) $\mathbb{E}\left[\mathbf{1}_{\left\{l_{l}^{(n)} \leq l\right\} \cup\left\{l_{l}^{(n)}=n\right\}}\left\|A_{r}^{(n)}\right\|_{o p}^{s}\right] \rightarrow 0$ for all $l \in \mathbb{N}$ and $r=1, \ldots, k$.
Then $\left(X_{n}\right)$ converges to a limit X,

$$
\zeta_{s}\left(X_{n}, X\right) \rightarrow 0, \quad n \rightarrow \infty .
$$

Derive the Functional Equations (I)

Consider the moment generating function for X_{n} :

$$
M_{n}(y):=\mathbb{E}\left(e^{X_{n} y}\right)
$$

The recurrence gives us

$$
M_{n}(y)=\mathbb{E}\left(e^{T_{n} y}\right) \sum_{j_{1}+\cdots+j_{m}=n} \pi_{j_{1}, \ldots, j_{m}} M_{j_{1}}(y) \cdots M_{j_{m}}(y), \quad\left(n \geq n_{0}\right),
$$

where

$$
\pi_{j_{1}, \ldots, j_{m}}=\binom{n}{j_{1} \cdots j_{m}} p_{1}^{j_{1}} \cdots p_{m}^{j_{m}} .
$$

Now, we can get the recurrences for the first and second moment of X_{n} by computing $M_{n}^{\prime}(0)$ and $M_{n}^{\prime \prime}(0)$.

Derive the Functional Equations (II)

We define the poissonized generating functions as the following

$$
\begin{array}{ll}
\tilde{f}_{1}(z)=e^{-z} \sum_{n \geq 0} \mathbb{E}\left(X_{n}\right) \frac{z^{n}}{n!}, & \tilde{f}_{2}(z)=e^{-z} \sum_{n \geq 0} \mathbb{E}\left(X_{n}^{2}\right) \frac{z^{n}}{n!} \\
\tilde{h}_{1}(z)=e^{-z} \sum_{n \geq 0} \mathbb{E}\left(T_{n}\right) \frac{z^{n}}{n!}, & \tilde{h}_{2}(z)=e^{-z} \sum_{n \geq 0} \mathbb{E}\left(T_{n}^{2} \frac{z^{n}}{n!},\right.
\end{array}
$$

Then the recurrence relation we get from the moment generating function become

$$
\begin{aligned}
& \tilde{f}_{1}(z)=\sum_{r=1}^{m} \tilde{f}_{1}\left(p_{r} z\right)+\tilde{h}_{1}(z), \\
& \tilde{f}_{2}(z)=\sum_{r=1}^{m} \tilde{f}_{2}\left(p_{r} z\right)+\sum_{r \neq s} \tilde{f}_{1}\left(p_{r} z\right) \tilde{f}_{1}\left(p_{s} z\right)+\tilde{h}_{2}(z)+\tilde{g}(z) .
\end{aligned}
$$

Functional Equations for the Poissonized Variance

Use the idea of Poissonized variance and the functional equations for the first and second moment of X_{n}, we get:

$$
\tilde{V}_{X}(z)=\sum_{r=1}^{m} \tilde{V}_{X}\left(p_{r} z\right)+\tilde{V}_{T}(z)+\tilde{\phi}_{1}(z)+\tilde{\phi}_{2}(z)
$$

where

$$
\begin{aligned}
& \tilde{\phi}_{1}(z)=\tilde{g}(z)-2 \tilde{h}_{1}(z) \sum_{r=1}^{m} \tilde{f}_{1}\left(p_{r} z\right)-2 z \tilde{h}_{1}^{\prime}(z) \sum_{r=1}^{m} p_{r} \tilde{f}_{1}^{\prime}\left(p_{r} z\right), \\
& \tilde{\phi}_{2}(z)=z \sum_{r<s} p_{r} p_{s}\left(\tilde{f}_{1}^{\prime}\left(p_{r} z\right)-\tilde{f}_{1}^{\prime}\left(p_{s} z\right)\right)^{2} .
\end{aligned}
$$

JS-admissibility

A systematic method which helps researchers using analytical-depoissonization.

JS-admissibility

A systematic method which helps researchers using analytical-depoissonization.

Definition

We let $\epsilon, \epsilon^{\prime} \in(0,1)$ be arbitrarily small numbers. An entire function \tilde{f} is said to be JS-admissible, denoted by $\tilde{f} \in \mathscr{J} \mathscr{S}_{\alpha, \beta}$, if the following two conditions hold for $|z| \geq 1$.
(I) There exists $\alpha, \beta \in \mathbb{R}$ such that uniformly for $|\arg (z)| \leq \epsilon$,

$$
\tilde{f}(z)=\mathcal{O}\left(|z|^{\alpha}\left(\log _{+}|z|^{\beta}\right),\right.
$$

where $\log _{+} x:=\log (1+x)$.
(O) Uniformly for $\epsilon \leq|\arg (z)| \leq \pi$,

$$
f(z):=e^{\tilde{\tilde{f}}} \tilde{f}(z)=\mathcal{O}\left(e^{\left(1-\epsilon^{\prime}\right)|z|}\right) .
$$

Lemma for the Functional Equations

Let $\tilde{f}(z)$ and $\tilde{h}(z)$ be entire functions satisfying a functional equation of the form

$$
\tilde{f}(z)=\sum_{r=1}^{m} \tilde{f}\left(p_{r} z\right)+\tilde{h}(z)
$$

where $h=-\sum_{r=1}^{m} p_{r} \log p_{r}$. If $\tilde{h}(z) \in \mathscr{J} \mathscr{S}_{\alpha, \gamma}$ with $0 \leq \alpha<1$ and $\tilde{f}(0)=\tilde{f}^{\prime}(0)=0$, then

$$
\tilde{f}(z)=\frac{1}{h} \sum_{\omega_{k} \in \mathcal{Z}<-\alpha-\epsilon} G\left(\omega_{k}\right) z^{-\omega_{k}}+\mathcal{O}\left(z^{\alpha+\epsilon}\right)
$$

where the sum expression is infinitely differentiable and

$$
G(\omega)=\int_{0}^{\infty} z^{\omega-1} \tilde{h}(z) d z=\mathscr{M}[\tilde{h} ; \omega] .
$$

Asymptotic for Mean and Variance

 If $\tilde{h}_{1}(z) \in \mathscr{J} \mathscr{S}_{\alpha_{1}, \gamma_{1}}$ with $0 \leq \alpha_{1}<1$, then$$
\mathbb{E}\left(X_{n}\right)=\frac{1}{h} \sum_{\omega_{k} \in \mathcal{Z}_{<-\alpha_{1}-\epsilon}} G_{E}\left(\omega_{k}\right) n^{-\omega_{k}}+\mathcal{O}\left(n^{\alpha_{1}+\epsilon}\right)
$$

where the sum expression is infinitely differentiable and

$$
G_{E}(\omega)=\mathscr{M}\left[\tilde{h}_{1} ; \omega\right]=\int_{0}^{\infty} \tilde{h}(z) z^{\omega-1} d z
$$

Moreover, if $\tilde{V}_{T}(z) \in \mathscr{J} \mathscr{S}_{\alpha_{2}, \gamma_{2}}$ with $0 \leq \alpha_{2}<1$ and $\tilde{h}_{2}(z) \in \mathscr{J} \mathscr{S}$, then

$$
\operatorname{Var}\left(X_{n}\right) \sim \frac{1}{h} \sum_{\omega_{k} \in \mathcal{Z}_{=-1}} G_{V}\left(\omega_{k}\right) n^{-\omega_{k}}
$$

where the sum expression is infinitely differentiable and

$$
G_{V}(\omega)=\mathscr{M}\left[\tilde{V}_{T}+\tilde{\phi}_{1}+\tilde{\phi}_{2} ; \omega\right]=\int_{0}^{\infty}\left(\tilde{V}_{T}(z)+\tilde{\phi}_{1}(z)+\tilde{\phi}_{2}(z)\right) z^{\omega-1} d z
$$

General Central Limit Theorem for

Tries

Theorem

Suppose that $\tilde{h}_{1}(z) \in \mathscr{J} \mathscr{S}_{\alpha_{1}, \gamma_{1}}$ with $0 \leq \alpha_{1}<1 / 2, \tilde{h}_{2}(z) \in \mathscr{J} \mathscr{S}$ and $\tilde{V}_{T}(z) \in \mathscr{J} \mathscr{S}_{\alpha_{2}, \gamma_{2}}$ with $0 \leq \alpha_{2}<1$. Moreover, we assume that $\left\|T_{n}\right\|_{s}=o(\sqrt{n})$ with $2<s \leq 3$ and $\mathbb{V}\left(X_{n}\right) \geq c n$ for all n large enough and some $c>0$. Then, as $n \rightarrow \infty$,

$$
\frac{X_{n}-\mathbb{E}\left(X_{n}\right)}{\sqrt{\mathbb{V}\left(X_{n}\right)}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Differential Functional Equations for DSTs

By similar computations, we get that

$$
\tilde{f}_{1}(z)+\tilde{f}_{1}^{\prime}(z)=2 \tilde{f}_{1}\left(\frac{z}{2}\right)+\tilde{\tau}_{1}(z)
$$

and

$$
\begin{aligned}
\tilde{V}(z)+\tilde{V}^{\prime}(z)= & 2 \tilde{V}\left(\frac{z}{2}\right)+\tilde{V}_{T}(z)+\tilde{\lambda}(z)-4 \tilde{\tau}_{1}(z) \tilde{f}_{1}\left(\frac{z}{2}\right) \\
& -2 z \tilde{\tau}_{1}^{\prime}(z) \tilde{f}_{1}^{\prime}\left(\frac{z}{2}\right)+z \tilde{f}_{1}^{\prime \prime}(z)^{2}
\end{aligned}
$$

where $\tilde{V}_{T}(z)=\tilde{\tau}_{2}(z)-\tilde{\tau}_{1}(z)^{2}-z \tilde{\tau}_{1}^{\prime}(z)^{2}$.

General Central Limit Theorems for DSTs

Theorem
Suppose $\tilde{\tau}_{1}(z) \in \mathscr{J} \mathscr{S}_{\alpha_{1}, \gamma_{1}}$ with $0 \leq \alpha_{1}<1 / 2, \tilde{\tau}_{2}(z) \in \mathscr{J} \mathscr{S}$ and $\tilde{V}_{T}(z) \in \mathscr{J} \mathscr{S}_{\alpha_{2}, \gamma_{2}}$ with $0 \leq \alpha_{2}<1$. Moreover, we assume that $\left\|T_{n}\right\|_{s}=o(\sqrt{n})$ with $2<s \leq 3$ and $\mathbb{V}\left(X_{n}\right) \geq c n$ for all n large enough and some $c>0$. Then, as $n \rightarrow \infty$

$$
\frac{X_{n}-\mathbb{E}\left(X_{n}\right)}{\sqrt{\mathbb{V}\left(X_{n}\right)}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Lower Bound for Variance

Consider two nonnegative sequence $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ satisfying a recurrence of the form

$$
\alpha_{n+1}=\sum_{i=1}^{m} a_{i} \sum_{j=0}^{n} f\left(n, j, p_{i}\right) \alpha_{j}+\beta_{n}, \quad\left(n \geq n_{0}\right),
$$

where a_{1}, \ldots, a_{m} are positive real numbers, $p_{i} \in(0,1)$ for all $1 \leq i \leq m$ and $f(n, j, p)$ is a nonnegative-valued function. We assume that there exists some $j^{\prime} \geq n_{0}$ such that $\beta_{j^{\prime}}>0$. We also assume that $f(n, j, p)$ satisfies that $\sum_{j=0}^{n} f(n, j, p)=1$ and there exists $n_{1} \geq n_{0}$ such that for all $n>n_{1}$ and $p<1$,

$$
\sum_{|j-p n|>p n^{\tau}} f(n, j, p)=\mathcal{O}\left(n^{\tau-1}\right)
$$

for some constant $1>\tau>0$, then $\alpha_{n}=\Omega\left(n^{\lambda}\right)$ with λ being the unique real root of $F(z)=1-\sum_{i=1}^{m} a_{i} p_{i}^{z}$.

The Internal Nodes of Tries

$N_{n}^{(k)}$: The number of internal nodes of outdegree k in a trie built on n keys.
We will give a multivariate study of these parameters by considering

$$
Z_{n}=\sum_{k=1}^{m} a_{k} N_{n}^{(k)},
$$

where a_{1}, \ldots, a_{m} are arbitrary real number with $a_{i} \neq(i-1) a_{2}$ for some i.

The Internal Nodes of Tries

$N_{n}^{(k)}$: The number of internal nodes of outdegree k in a trie built on n keys.
We will give a multivariate study of these parameters by considering

$$
Z_{n}=\sum_{k=1}^{m} a_{k} N_{n}^{(k)},
$$

where a_{1}, \ldots, a_{m} are arbitrary real number with $a_{i} \neq(i-1) a_{2}$ for some i.Then,
Lemma
Z_{n} is not deterministic for n large enough.
proof
Find two examples.

Recurrence of Z_{n}

We derive the recurrence for Z_{n} from $N_{n}^{(k)}$:

$$
N_{n}^{(k)} \stackrel{d}{=} \sum_{i=1}^{m}\left(N_{I_{n}^{(i)}}^{(k)}\right)^{(i)}+T_{n}^{(k)}, \quad(n \geq 2)
$$

with the initial conditions $N_{0}^{(k)}=N_{1}^{(k)}=0$ and

$$
T_{n}^{(k)}= \begin{cases}1, & \text { if } \#\left\{1 \leq i \leq m: I_{n}^{(i)} \neq 0\right\}=k ; \\ 0, & \text { otherwise }\end{cases}
$$

Consequently,

$$
Z_{n} \stackrel{d}{=} \sum_{i=1}^{m} Z_{I_{n}^{(i)}}^{(i)}+T_{n}, \quad(n \geq 2)
$$

where $Z_{0}=Z_{1}=0$ and

$$
T_{n}=\sum_{k=1}^{m} a_{k} T_{n}^{(k)} .
$$

The Lower Bound of the Variance of

Z_{n}
Theorem
We have, $\operatorname{Var}\left(Z_{n}\right) \geq c n$ with $c>0$ for all n large enough. proof

- Set $\mu_{n}=\mathbb{E}\left(Z_{n}\right)$ and

$$
M_{n}(y)=\mathbb{E}\left(e^{\left(Z_{n}-\mu_{n}\right) y}\right)
$$

- From the recurrence, we get

$$
\operatorname{Var}\left(Z_{n}\right)=\sigma_{n}^{2}=\sum_{i=1}^{m} \sum_{j=0}^{n}\binom{n}{j} p_{i}^{j}\left(1-p_{i}\right)^{n-j} \sigma_{j}^{2}+\eta_{n}, \quad(n \geq 2)
$$

- Check that $\eta_{n}>0$ for some $n>2$, then apply the lemma.

Main Theorem from the Framework

Theorem
We have, as $n \rightarrow \infty$,

$$
\mathbb{E}\left(Z_{n}\right) \sim n P\left(\log _{1 / a} n\right), \quad \operatorname{Var}\left(Z_{n}\right) \sim n Q\left(\log _{1 / a} n\right)
$$

where $a>0$ is a suitable constant and $P(z), Q(z)$ are infinitely differentiable, 1-periodic functions (possibly constant). Moreover, $\operatorname{Var}\left(Z_{n}\right)>0$ for all n large enough and

$$
\frac{Z_{n}-\mathbb{E}\left(Z_{n}\right)}{\sqrt{\operatorname{Var}\left(Z_{n}\right)}} \xrightarrow{d} N(0,1) .
$$

Proof

Check all the conditions in the framework.

Bivariate Setting

Set

$$
\operatorname{Var}\left(N_{n}^{\left(k_{1}\right)}\right) \sim n Q^{\left(k_{1}\right)}\left(\log _{1 / a} n\right), \quad \operatorname{Var}\left(N_{n}^{\left(k_{2}\right)}\right) \sim n Q^{\left(k_{2}\right)}\left(\log _{1 / a} n\right)
$$

and

$$
\Sigma_{n}=\left(\begin{array}{cc}
n Q^{\left(k_{1}\right)}\left(\log _{1 / a} n\right) & n Q^{\left(k_{1}, k_{2}\right)}\left(\log _{1 / a} n\right) \\
n Q^{\left(k_{1}, k_{2}\right)}\left(\log _{1 / a} n\right) & n Q^{\left(k_{2}\right)}\left(\log _{1 / a} n\right)
\end{array}\right)
$$

Lemma
The correlation coefficient $\rho\left(N_{n}^{\left(k_{1}\right)}, N_{n}^{\left(k_{2}\right)}\right)$ is not -1 or 1 for all n large enough.
proof
Check examples.

Bivariate Limit Law

Theorem
Assume that $\left(k_{1}, k_{2}, m\right) \notin\{(1,2,2),(2,3,3)\}$. Then, Σ_{n} is positive definite for n large enough and, as $n \rightarrow \infty$,

$$
\Sigma_{n}^{-1 / 2}\binom{N_{n}^{\left(k_{1}\right)}-\mathbb{E}\left(N_{n}^{\left(k_{1}\right)}\right)}{N_{n}^{\left(k_{2}\right)}-\mathbb{E}\left(N_{n}^{\left(k_{2}\right)}\right)} \xrightarrow{d} N\left(0, I_{2}\right),
$$

where I_{2} denotes the 2×2 identity matrix.

Proof

By checking the required conditions for the contraction method.

2-Protected Nodes in DSTs

k-protected node: A node in a tree is said to be k-protected if the distance from the node to each leaf is at least k.

2-Protected Nodes in DSTs

k-protected node: A node in a tree is said to be k-protected if the distance from the node to each leaf is at least k.

- Proposed by Cheon and Shapiro.
- Studied under Planar trees, Motzkin trees, ternary trees, k-ary trees (mean), binary search trees (CLT), k-ary search trees (some probabilistic properties), DSTs (mean).
- Janson and Devroye extend the concept to protected fringe subtree.

Distribution Recurrence of 2-protected Nodes in DSTs

Let L_{n} be the number of 2-protected nodes in a DST built on n keys, then under the Bernoulli model, 2-protected nodes in DSTs satisfies the recurrence

$$
L_{n+1} \stackrel{d}{=} L_{B_{n}}+L_{n-B_{n}}^{*}+T_{n}, \quad(n \geq 3)
$$

where $B_{n}=\operatorname{Binomial}(n, 1 / 2)$ and

$$
T_{n}= \begin{cases}0, & B_{n}=1 \vee n-1 \\ 1, & \text { Otherwise }\end{cases}
$$

\Longrightarrow The framework can be applied here.

Results from the Framework

Theorem
We have that

$$
\mathbb{E}\left(L_{n}\right)=\frac{n}{\log 2} \sum_{k \in \mathbb{Z}} \frac{G_{E}\left(2+\chi_{k}\right)}{\Gamma\left(2+\chi_{k}\right)} n^{\chi_{k}}+\mathcal{O}\left(n^{\epsilon}\right) \quad \text { as } n \rightarrow \infty,
$$

and

$$
\mathbb{V}\left(L_{n}\right) \sim \frac{n}{\log 2} \sum_{k \in \mathbb{Z}} \frac{G_{V}\left(2+\chi_{k}\right)}{\Gamma\left(2+\chi_{k}\right)} n^{\chi_{k}}
$$

as $n \rightarrow \infty$.

Moreover,

$$
\frac{L_{n}-\mathbb{E}\left(L_{n}\right)}{\sqrt{\operatorname{Var}\left(L_{n}\right)}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Expression of $G_{E}(\omega)$

We have that

$$
G_{E}(\omega)=\kappa(-\omega) \Gamma(\omega) \Gamma(1-\omega)+\frac{Q\left(2^{\omega-1}\right)}{Q(1)} \Gamma(-\omega) \Gamma(\omega+1)
$$

where

$$
\begin{aligned}
\kappa(\omega)= & \frac{8 \cdot 2^{4 l}-32 \cdot 2^{3 l}+46 \cdot 2^{2 l}-32 \cdot 2^{l}+9}{2^{1-l \omega}\left(2 \cdot 2^{l}-1\right)^{2}\left(2^{l}-1\right)^{3}} \\
& -\frac{2^{\omega+l+3}\left(\omega\left(2^{l+1}-1\right)+2^{l+1}-2\right)}{\left(2 \cdot 2^{l}-1\right)^{2}} \\
& +\frac{2^{l}\left(2^{l}\left(\omega^{2}+3 \omega-2\right)-2^{l+1}\left(\omega^{2}+4 \omega-2\right)+\omega^{2}+5 \omega+2\right)}{4\left(2^{l}-1\right)^{3}} .
\end{aligned}
$$

