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Members in the Digital Tree Family (I)
We are mainly dealing with Tries, PATRICIA Tries, Digital
Search Trees (DSTs) and Bucket Digital Search Trees
(b-DSTs).

• Tries:
• Invented by R. de la Briandais and named by E. Fredkin.
• Have many advantages over other already-existing data

structures such as binary search trees.
• Applied in all kinds of areas in computer science.

• PATRICIA Tries:
• Invented by D. R. Morrison in 1986.
• An variant of Tries which avoid one way branching of

internal nodes.
• Applied in many areas, especially in IP routing.
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Members in the Digital Tree Family (II)
• Digital Search Trees:

• Invented by E. Coffman and J. Eve in 1970.
• Attracted considerable attention due to their close

connection to the famous Lempel-Ziv compression scheme.
• The data are stored in the nodes while the data only

appears in the leaves of tries.

• Bucket Digital Search Trees:
• A generalization of DSTs.
• Each node can store b keys. Origin DSTs are b-DSTS with

b = 1.
• Related to many practical algorithms, such as memory

management in UNIX.
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Construction of Tries
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Construction of DSTs
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Construction of b-DSTs
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Figure: A bucket digital search tree built from the keys S1, . . . , S8 with
bucket size b = 2.
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Random Model
Random Model: Bernoulli model.
Bits of keys: i.i.d. Bernoulli random variables

Bianry case: The i-th key will be of the form

Ai,1,Ai,2, . . . ,Ai,l, . . .

where P(Ai,j = 0) = p and P(Ai,j = 1) = q = 1− p.

m-ary case: The i-th key is of the same form with
Ai,j ∈ A = {a1, ..., am} for some alphabet A of the
size m.
P(Ai,j = ak) = pk with

m∑
i=1

pi = 1 and 0 ≤ pi ≤ 1 for all i.
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Additive Shape Parameters
Additive Shape Parameters in Tries A sequence of random

variables satisfying the recurrence

Xn
d
=

m∑
r=1

X(r)

B(r)
n

+ Tn, (n ≥ n0),

where n0 ≥ 0 is an integer,
Xn,X

(1)
n , . . . ,X(m)

n , (B(1)
n , . . . ,B(m)

n ), Tn are
independent and B(r)

n is the multinomial
distribution.

Additive Shape Parameters in (Bucket) DSTs A sequence of
random variables satisfying the recurrence

Xn+b
d
=

m∑
r=1

X(r)

B(r)
n

+ Tn+b, (n ≥ n0),

where b ∈ N.
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Contraction Method (I)
We start with a sequence of d-dimensional random vectors
{Yn}n≥0 satisfying the distributional recursion

Yn
d
=

k∑
r=1

Ar(n)Y(r)

I(n)
r

+ bn, n ≥ n0,

where
1 I(n)r is a vector of random cardinalities with I(n)r ∈ {0, . . . , n}

2
(

A1(n), . . . ,Ak(n), bn, I
(n)
1 , . . . , I(n)k

)
, (Y(1)

n ), . . . , (Y(k)
n ), (Yn)

are independent,
3 A1(n), . . . ,Ak(n) are random d × d matrices,
4 bn is a random d-dimensional vector,
5 (Y(1)

n ), . . . , (Y(k)
n ) are identically distributed as (Yn).
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Contraction Method (II)
Next, we normalize the Yn by

Xn := C−1/2
n (Yn −Mn) , n ≥ n0,

where Mn ∈ Rd and Cn are suitably chosen positive-definite
square matrices. The normalized quantities Xn then satisfy the
modified recurrence

Xn
d
=

k∑
r=1

Ar(n)X(r)

I(n)
r

+ b(n), n ≥ n0,

with

A(n)
r := C−1/2

n Ar(n)C1/2

I(n)
r
, b(n) := C−1/2

n

(
bn −Mn +

k∑
r=1

Ar(n)M
I(n)
r

)
and the independence relations are as for Yn. The normalized
quantities will converge in ζs under suitable conditions.

10 / 31



Contraction Method (III)
Theorem
Let (Xn) be normalized as before and s-integrable and
0 < s ≤ 3. Assume that as n→∞,

1
(

A(n)
1 , . . . ,A(n)

k , bn

)
Ls−→ (A∗1, . . . ,A

∗
k , b
∗),

2 E
k∑

r=1

‖A∗r‖
s
op < 1, and

3 E
[
1{I(n)

r ≤l}∪{I(n)
r =n}‖A

(n)
r ‖s

op

]
→ 0 for all l ∈ N and

r = 1, . . . , k.
Then (Xn) converges to a limit X,

ζs(Xn,X)→ 0, n→∞.
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Derive the Functional Equations (I)
Consider the moment generating function for Xn:

Mn(y) := E
(
eXny) .

The recurrence gives us

Mn(y) = E
(
eTny) ∑

j1+···+jm=n

πj1,...,jmMj1(y) · · ·Mjm(y), (n ≥ n0),

where

πj1,...,jm =

(
n

j1 · · · jm

)
pj1

1 · · · p
jm
m .

Now, we can get the recurrences for the first and second
moment of Xn by computing M′n(0) and M′′n (0).
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Derive the Functional Equations (II)
We define the poissonized generating functions as the following

f̃1(z) = e−z
∑
n≥0

E(Xn)
zn

n!
, f̃2(z) = e−z

∑
n≥0

E(X2
n)

zn

n!

h̃1(z) = e−z
∑
n≥0

E(Tn)
zn

n!
, h̃2(z) = e−z

∑
n≥0

E(T2
n )

zn

n!
,

Then the recurrence relation we get from the moment
generating function become

f̃1(z) =
m∑

r=1

f̃1(prz) + h̃1(z),

f̃2(z) =

m∑
r=1

f̃2(prz) +
∑
r 6=s

f̃1(prz)f̃1(psz) + h̃2(z) + g̃(z).
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Functional Equations for the
Poissonized Variance

Use the idea of Poissonized variance and the functional
equations for the first and second moment of Xn, we get:

ṼX(z) =

m∑
r=1

ṼX(prz) + ṼT(z) + φ̃1(z) + φ̃2(z),

where

φ̃1(z) =g̃(z)− 2h̃1(z)
m∑

r=1

f̃1(prz)− 2zh̃′1(z)
m∑

r=1

pr f̃ ′1(prz),

φ̃2(z) =z
∑
r<s

prps

(
f̃ ′1(prz)− f̃ ′1(psz)

)2
.
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JS-admissibility
A systematic method which helps researchers using
analytical-depoissonization.

Definition
We let ε, ε′ ∈ (0, 1) be arbitrarily small numbers. An entire
function f̃ is said to be JS-admissible, denoted by f̃ ∈J S α,β,
if the following two conditions hold for |z| ≥ 1.

(I) There exists α, β ∈ R such that uniformly for | arg(z)| ≤ ε,

f̃ (z) = O
(
|z|α(log+ |z|)β

)
,

where log+ x := log(1 + x).
(O) Uniformly for ε ≤ | arg(z)| ≤ π,

f (z) := ez f̃ (z) = O
(

e(1−ε
′)|z|
)
.
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Lemma for the Functional Equations
Let f̃ (z) and h̃(z) be entire functions satisfying a functional
equation of the form

f̃ (z) =

m∑
r=1

f̃ (prz) + h̃(z)

where h = −
m∑

r=1

pr log pr. If h̃(z) ∈J S α,γ with 0 ≤ α < 1 and

f̃ (0) = f̃ ′(0) = 0, then

f̃ (z) =
1
h

∑
ωk∈Z<−α−ε

G(ωk)z−ωk +O(zα+ε),

where the sum expression is infinitely differentiable and

G(ω) =

∫ ∞
0

zω−1h̃(z)dz = M [h̃;ω].
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Asymptotic for Mean and Variance
If h̃1(z) ∈J S α1,γ1

with 0 ≤ α1 < 1, then

E (Xn) =
1
h

∑
ωk∈Z<−α1−ε

GE(ωk)n−ωk +O(nα1+ε),

where the sum expression is infinitely differentiable and

GE(ω) = M [h̃1;ω] =

∫ ∞
0

h̃(z)zω−1dz.

Moreover, if ṼT(z) ∈J S α2,γ2
with 0 ≤ α2 < 1 and

h̃2(z) ∈J S , then

Var (Xn) ∼ 1
h

∑
ωk∈Z=−1

GV(ωk)n−ωk ,

where the sum expression is infinitely differentiable and

GV(ω) = M [ṼT+φ̃1+φ̃2;ω] =

∫ ∞
0

(
ṼT(z) + φ̃1(z) + φ̃2(z)

)
zω−1dz.
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General Central Limit Theorem for
Tries

Theorem
Suppose that h̃1(z) ∈J S α1,γ1

with 0 ≤ α1 < 1/2, h̃2(z) ∈J S

and ṼT(z) ∈J S α2,γ2
with 0 ≤ α2 < 1. Moreover, we assume

that ‖Tn‖s = o(
√

n) with 2 < s ≤ 3 and V(Xn) ≥ cn for all n large
enough and some c > 0. Then, as n→∞,

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1).
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Differential Functional Equations for
DSTs

By similar computations, we get that

f̃1(z) + f̃ ′1(z) = 2f̃1
( z

2

)
+ τ̃1(z),

and

Ṽ(z) + Ṽ ′(z) =2Ṽ
( z

2

)
+ ṼT(z) + λ̃(z)− 4τ̃1(z)f̃1

( z
2

)
− 2zτ̃ ′1(z)f̃ ′1

( z
2

)
+ zf̃ ′′1 (z)2

where ṼT(z) = τ̃2(z)− τ̃1(z)2 − zτ̃ ′1(z)2.
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General Central Limit Theorems for
DSTs

Theorem
Suppose τ̃1(z) ∈J S α1,γ1

with 0 ≤ α1 < 1/2, τ̃2(z) ∈J S and
ṼT(z) ∈J S α2,γ2

with 0 ≤ α2 < 1. Moreover, we assume that
‖Tn‖s = o(

√
n) with 2 < s ≤ 3 and V(Xn) ≥ cn for all n large

enough and some c > 0. Then, as n→∞

Xn − E(Xn)√
V(Xn)

d−→ N (0, 1).
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Lower Bound for Variance
Consider two nonnegative sequence {αi} and {βi} satisfying a
recurrence of the form

αn+1 =

m∑
i=1

ai

n∑
j=0

f (n, j, pi)αj + βn, (n ≥ n0),

where a1, . . . , am are positive real numbers, pi ∈ (0, 1) for all
1 ≤ i ≤ m and f (n, j, p) is a nonnegative-valued function. We
assume that there exists some j′ ≥ n0 such that βj′ > 0. We
also assume that f (n, j, p) satisfies that

∑n
j=0 f (n, j, p) = 1 and

there exists n1 ≥ n0 such that for all n > n1 and p < 1,∑
|j−pn|>pnτ

f (n, j, p) = O(nτ−1)

for some constant 1 > τ > 0, then αn = Ω(nλ) with λ being the
unique real root of F(z) = 1−

∑m
i=1 aipz

i .
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The Internal Nodes of Tries
N(k)

n : The number of internal nodes of outdegree k in a trie built
on n keys.
We will give a multivariate study of these parameters by
considering

Zn =

m∑
k=1

akN(k)
n ,

where a1, . . . , am are arbitrary real number with ai 6= (i− 1)a2 for
some i.

Then,

Lemma
Zn is not deterministic for n large enough.

proof
Find two examples.
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Recurrence of Zn
We derive the recurrence for Zn from N(k)

n :

N(k)
n

d
=

m∑
i=1

(N(k)

I(i)
n

)(i) + T(k)
n , (n ≥ 2),

with the initial conditions N(k)
0 = N(k)

1 = 0 and

T(k)
n =

{
1, if #{1 ≤ i ≤ m : I(i)n 6= 0} = k;

0, otherwise.

Consequently,

Zn
d
=

m∑
i=1

Z(i)

I(i)
n

+ Tn, (n ≥ 2),

where Z0 = Z1 = 0 and

Tn =

m∑
k=1

akT(k)
n .
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The Lower Bound of the Variance of
Zn

Theorem
We have, Var(Zn) ≥ cn with c > 0 for all n large enough.

proof

• Set µn = E(Zn) and

Mn(y) = E
(

e(Zn−µn)y
)
.

• From the recurrence, we get

Var(Zn) = σ2
n =

m∑
i=1

n∑
j=0

(
n
j

)
pj

i(1− pi)
n−jσ2

j + ηn, (n ≥ 2)

• Check that ηn > 0 for some n > 2, then apply the lemma.
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Main Theorem from the Framework
Theorem
We have, as n→∞,

E(Zn) ∼ nP(log1/a n), Var(Zn) ∼ nQ(log1/a n),

where a > 0 is a suitable constant and P(z),Q(z) are infinitely
differentiable, 1-periodic functions (possibly constant).
Moreover, Var(Zn) > 0 for all n large enough and

Zn − E(Zn)√
Var(Zn)

d−→ N(0, 1).

Proof
Check all the conditions in the framework.
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Bivariate Setting
Set

Var(N(k1)
n ) ∼ nQ(k1)(log1/a n), Var(N(k2)

n ) ∼ nQ(k2)(log1/a n)

and

Σn =

(
nQ(k1)(log1/a n) nQ(k1,k2)(log1/a n)

nQ(k1,k2)(log1/a n) nQ(k2)(log1/a n)

)
.

Lemma
The correlation coefficient ρ(N(k1)

n ,N(k2)
n ) is not −1 or 1 for all n

large enough.

proof
Check examples.
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Bivariate Limit Law
Theorem
Assume that (k1, k2,m) 6∈ {(1, 2, 2), (2, 3, 3)}. Then, Σn is
positive definite for n large enough and, as n→∞,

Σ−1/2
n

(
N(k1)

n − E(N(k1)
n )

N(k2)
n − E(N(k2)

n )

)
d−→ N(0, I2),

where I2 denotes the 2× 2 identity matrix.

Proof
By checking the required conditions for the contraction method.
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2-Protected Nodes in DSTs
k-protected node: A node in a tree is said to be k-protected if
the distance from the node to each leaf is at least k.

• Proposed by Cheon and Shapiro.

• Studied under Planar trees, Motzkin trees, ternary trees,
k-ary trees (mean), binary search trees (CLT), k-ary search
trees (some probabilistic properties), DSTs (mean).

• Janson and Devroye extend the concept to protected
fringe subtree.
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Distribution Recurrence of
2-protected Nodes in DSTs

Let Ln be the number of 2-protected nodes in a DST built on n
keys, then under the Bernoulli model, 2-protected nodes in
DSTs satisfies the recurrence

Ln+1
d
= LBn + L∗n−Bn

+ Tn, (n ≥ 3),

where Bn = Binomial(n, 1/2) and

Tn =

{
0, Bn = 1 ∨ n− 1;
1, Otherwise.

=⇒ The framework can be applied here.

29 / 31



Results from the Framework
Theorem
We have that

E(Ln) =
n

log 2

∑
k∈Z

GE(2 + χk)

Γ(2 + χk)
nχk +O(nε) as n→∞,

and

V(Ln) ∼ n
log 2

∑
k∈Z

GV(2 + χk)

Γ(2 + χk)
nχk as n→∞.

Moreover,
Ln − E(Ln)√

Var(Ln)

d−→ N (0, 1).
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Expression of GE(ω)
We have that

GE(ω) = κ(−ω)Γ(ω)Γ(1− ω) +
Q(2ω−1)

Q(1)
Γ(−ω)Γ(ω + 1),

where

κ(ω) =
8 · 24l − 32 · 23l + 46 · 22l − 32 · 2l + 9

21−lω(2 · 2l − 1)2(2l − 1)3

−
2ω+l+3

(
ω(2l+1 − 1) + 2l+1 − 2

)
(2 · 2l − 1)2

+
2l
(
2l(ω2 + 3ω − 2)− 2l+1(ω2 + 4ω − 2) + ω2 + 5ω + 2

)
4(2l − 1)3 .
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