Which connected graphs are determined by their distance spectra

Huiqiu Lin

Department of Mathematics, East China University of Science and
Technology, Shanghai
Joint work with Jinlong Shu, Yuan Hong, Jianfeng Wang, Shicai Gong, Mingqing Zhai

August, 2014

Which connected graphs are determined by their distance spectra

Huiqiu Lin

Department of Mathematics, East China University of Science and
Technology, Shanghai
Joint work with Jinlong Shu, Yuan Hong, Jianfeng Wang, Shicai Gong, Mingqing Zhai

August, 2014

Which connected graphs are determined by their distance spectra

Huiqiu Lin

Department of Mathematics, East China University of Science and
Technology, Shanghai
Joint work with Jinlong Shu, Yuan Hong, Jianfeng Wang, Shicai Gong, Mingqing Zhai

August, 2014

Definition

The distance matrix $D(G)=\left(d_{i j}\right)_{n \times n}$ of a connected graph G is the matrix indexed by the vertices of G, where $d_{i j}$ denotes the distance between the vertices v_{i} and v_{j}.

Since $D(G)$ is irreducible nonnegative matrix, we call order the distance spectra (D-eigenvalue) of a connected graph G as:
$\lambda_{1}(D)>\lambda_{2}(D) \geq \cdots \geq \lambda_{n-1}(D) \geq \lambda_{n}(D)$.

$$
D(G)=\left(\begin{array}{llllll}
0 & 1 & 2 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 & 1 & 2 \\
2 & 1 & 0 & 1 & 1 & 2 \\
1 & 2 & 1 & 0 & 2 & 2 \\
2 & 1 & 1 & 2 & 0 & 3 \\
1 & 2 & 2 & 2 & 3 & 0
\end{array}\right)
$$

The research for distance matrix can be dated back to the following papers, which present an interesting result that the determinant of the distance matrix of trees with order n is always $(-1)^{n-1}(n-1) 2^{n-2}$, independent of the structure of the tree.
[M. Edelberg, M.R. Garey, R.L. Graham, On the distance matrix of a tree, Discrete Math. 14 (1976) 23-29.]
[R.L. Graham, H.O. Pollack, On the addressing problem for loop switching, Bell Syst. Tech. J. 50 (1971) 2495-2519.]

Two nonisomorphic graphs with the same D-spectra are called D-cospectral.

Fig. 1 The smallest D-cospectral trees.
[M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra and its Applications 439 (2013) 21-33.]

Fig. 2 Two pairs of D-cospectral trees on 19 vertices.

Fig. 3 Five pairs, by column, of D-cospectral trees on 20 vertices.

We say that a graph is determined by the D-spectra if there is no other nonisomorphic graph with the same D-spectra.

Problem

Which connected graphs are determined by their D-spectra?
The complete graph K_{n} (is the unique graph which the least D-eigenvalue attains the maximum among all connected graphs.) and the path P_{n} (is the unique graph which the largest D-eigenvalue attains the maximum among all connected graphs.) are determined by their D-spectra.

Theorem

Let G be a connected graph and D be the distance matrix of G. Then $\lambda_{n}(D)=-2$ with multiplicity $n-k$ if and only if G is a complete k-partite graph for $2 \leq k \leq n-1$.
[H. Lin, Y. Hong, J. Wang, J. Shu, On the distance spectrum of graphs, Linear Algebra and its Applications, 439(2013) 1662-1669]

Cauchy Interlace Theorem

Let A be a Hermitian matrix of order n and let B be a principal submatrix of A of order m. If $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$ lists the eigenvalues of A and $\mu_{1}(B) \geq \mu_{2}(B) \geq \cdots \geq \mu_{m}(B)$ the eigenvalues of B, then $\lambda_{n-m+i}(A) \leq \mu_{i}(B) \leq \lambda_{i}(A)$ for $i=1, \cdots, m$.

Proposition

Let G be a connected graph with diameter $d \geq 3$. Then

$$
\lambda_{n}(D(G)) \leq \lambda_{4}\left(D\left(P_{4}\right)\right)=-2-\sqrt{2} .
$$

Conjecture

For a connected graph $G, d \leq-\lambda_{n}(D)$, where d denotes the diameter of G. Equality holds if and only if G is a multipartite graph.
[M. Aouchiche, P. Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl. 458 (2014) 301-386.]

Conjecture

Let G be a connected graph on $n \geq 3$ vertices with girth $g \geq 5$ and minimum dual degree δ^{\star}. Then $\lambda_{n}(D) \leq \delta^{\star}$ where δ^{\star} denotes the minimum average 2-degree.
[S. Fajtlowicz, Written on the wall: conjectures derived on the basis of the program Galatea Gabriella Graffiti, technical report, University of Houston, 1998.]

Courant-Weyl inequalities

Let A and B be $n \times n$ Hermitian matrices and $C=A+B$. Then

$$
\begin{aligned}
& \lambda_{i}(C) \leq \lambda_{j}(A)+\lambda_{i-j+1}(B)(n \geq i \geq j \geq 1), \\
& \lambda_{i}(C) \geq \lambda_{j}(A)+\lambda_{i-j+n}(B)(1 \leq i \leq j \leq n)
\end{aligned}
$$

In either of these inequalities equality holds if and only if there exists a nonzero n-vector that is an eigenvector to each of the three involved eigenvalues.
[W. So, Commutativity and spectra of Hermitian matrices, Linear Algebra Appl. 212-213 (1994) 121-129.]

Proposition

Let G be a connected graph with diameter $d=2$. Then

$$
D(G)=J-I+A(\bar{G})
$$

If $G=K_{n_{1}, \cdots, n_{k}}$ with $n_{1} \geq \cdots \geq n_{k}$, then $\bar{G}=K_{n_{1}} \cup \cdots \cup K_{n_{k}}$. Obviously, $\operatorname{Sp}(\bar{G})=\left\{n_{1}-1, \cdots, n_{k}-1,-1, \cdots,-1\right\}$.

$$
\lambda_{i-1}(\bar{G})+\lambda_{2}(J-I) \geq \lambda_{i}(D) \geq \lambda_{i}(\bar{G})+\lambda_{n}(J-I) \text { for } i=2, \cdots, n
$$

Conjecture

The complete multipartite graph $K_{n_{1}, \cdots, n_{k}}$ is determined by its distance spectra.

In 2014, Y.-L. Jin and X.-D. Zhang confirmed the conjecture.
[Y.-L. Jin, X.-D. Zhang, Complete multipartite graphs are determined by their distance spectra, Linear Algebra Appl. 448 (2014) 285-291.]

Theorem, H. Lin, submitted

Let G be a connected graph and D be the distance matrix of G. Then $\lambda_{n}(D) \in[-1-\sqrt{2},-2.383]$ if and only if $G=G\left(s, n_{1}, \cdots, n_{k}\right)$ for $s \geq 1$. Moreover, $\lambda_{n}(D)=-1-\sqrt{2}$ with multiplicity $s-1$.

Let $G\left(s, n_{1}, \cdots, n_{k}\right)$ be the graph obtained by
$\underbrace{\left(K_{1} \cup K_{2}\right) \vee \cdots \vee\left(K_{1} \cup K_{2}\right)} \vee K_{n_{1}, \cdots, n_{k}}$. The following picture shows the graphs with the least D-eigenvalue in each interval.

$$
\begin{array}{cccc}
\lambda_{n}(D) & -1-\sqrt{2} & -2.383 & -2 \\
-1 \\
G\left(s, \overline{n_{1}, \cdots, n_{k}} \dot{)}, s \geq 2\right. & G\left(1, n_{1}, \cdots, n_{k}\right) \dot{G}(1,1) & \dot{K}_{n_{1}, \cdots, n_{k}} K_{n}
\end{array}
$$

Theorem, submitted

Let G be a connected graph D be the distance matrix of G. If $\lambda_{n}(D) \geq-1-\sqrt{2}$, then G is determined by its distance spectra.

For a connected graph G. Note that $\lambda_{n}(D) \leq-1$.

Problem

For a given k and a sufficient larger n (with respect to k), does $\lambda_{n-k}(D) \leq-1$.

We give a positive answer to the problem for $k=1,2$.

$$
\text { Let } K_{s, t}^{r}=K_{r} \vee\left(K_{s} \cup K_{t}\right) \text { with } r \geq 1 \text {. }
$$

Theorem

Let G be a connected graph with order n and D be the distance matrix of G. If $n \geq 4$, then $\lambda_{n-1}(D) \leq-1$ and the equality holds if and only if $G \cong K_{s, t}^{r}$ with $r \geq 1$.

Lemma

Let G be a connected graph with order $n \geq 3$. Then $G \cong K_{s, t}^{r}$ if and only if G is $\left\{K_{1,3}, P_{4}, C_{4}\right\}$-free.
[H. Lin, M. Zhai, S. Gong, On graphs with at least three distance eigenvalues less than -1, Linear Algebra and its Applications, 458 (2014) 548-558.]

Theorem

Let G be a connected graph with order n and D be the distance matrix of G. If $n \geq 7$, then $\lambda_{n-2}(D) \leq-1$.

Theorem

For any non-negative integers r, s, t with $r \geq 1$, the graph $K_{s, t}^{r}$ is determined by its distance spectra.

Theorem

Let G be a connected graph with order $n \geq 4$ and $\lambda_{n-2}(D(G))>-1$. Then G is determined by its distance spectra.

Thank
 You !

