Spectral Excess Theorem and its Applications

李光祥（交大應數）

2014 組合數學新苗研討會

台灣師範大學
August 3， 2014

This research is conducted under the supervision of Professor Chih－wen Weng．

Distance-regularity

- Let G be a connected graph on n vertices, with vertex set V and diameter D.
- For $0 \leq i \leq D$ and two vertices $u, v \in V$ at distance i, set

$$
\begin{aligned}
c_{i}(u, v) & :=\left|G_{1}(v) \cap G_{i-1}(u)\right|, \\
a_{i}(u, v) & :=\left|G_{1}(v) \cap G_{i}(u)\right|, \text { and } \\
b_{i}(u, v) & :=\left|G_{1}(v) \cap G_{i+1}(u)\right| .
\end{aligned}
$$

- These parameters are well-defined if they are independent of the choice of u, v. In this case we use the symbols c_{i}, a_{i} and b_{i} for short.
- A connected graph G with diameter D is called distance-regular if the above-mentioned parameters are well-defined.
- Assume that adjacency matrix A has $d+1$ distinct eigenvalues $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{d}$ with corresponding multiplicities $m_{0}=1, m_{1}, \ldots$, m_{d}.
- The spectrum of G is denoted by the multiset

$$
\operatorname{sp} G=\left\{\lambda_{0}^{m_{0}}, \lambda_{1}^{m_{1}}, \ldots, \lambda_{d}^{m_{d}}\right\} .
$$

- The parameter d is called the spectral diameter of G.

Note that $D \leq d$.

Question: Is the distance-regularity of a graph determined by its spectrum?

Answer: In general, the answer is negative.

The Hamming 4-cube and the Hoffman graph (distance-regular) (c_{2} is not well-defined)

We have known that the distance-regularity of a graph is in general not determined by its spectrum.

Question: Under what additional conditions, the answer is positive?
Answer: The spectral excess theorem.

The spectral excess theorem gives a quasi-spectral characterization for a regular graph to be distance-regular.

Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with $d+1$ distinct eigenvalues. Then, $\bar{k}_{d} \leq p_{d}\left(\lambda_{0}\right)$, and equality is attained if and only if G is distance-regular.

- $\bar{k}_{d}=\frac{1}{n} \sum_{u \in V}\left|G_{d}(u)\right|:$ average excess (combinatorial aspect) - the mean of the numbers of vertices at distance d from each vertex
- $p_{d}\left(\lambda_{0}\right)$: spectral excess (algebraic aspect) - a number which can be computed from the spectrum

Therefore, besides the spectrum, a simple combinatorial property suffices for a regular graph to be distance-regular.

The Hamming 4-cube and the Hoffman graph

$$
\left(\bar{k}_{d}=1=p_{d}\left(\lambda_{0}\right)\right) \quad\left(\bar{k}_{d}=1 / 2<1=p_{d}\left(\lambda_{0}\right)\right)
$$

Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with $d+1$ distinct eigenvalues. Then, $\bar{k}_{d} \leq p_{d}\left(\lambda_{0}\right)$, and equality is attained if and only if G is distance-regular.

The following example shows that the spectral excess theorem cannot be directly applied to nonregular graphs.

Example

Let G be a path on three vertices, with spectrum $\{\sqrt{2}, 0,-\sqrt{2}\}$. Note that $D=d=2, \bar{k}_{2}=2 / 3$ and $p_{2}\left(\lambda_{0}\right)=1 / 2$. This shows that $\bar{k}_{d} \leq p_{d}\left(\lambda_{0}\right)$ does not hold for nonregular graphs.

Thus, a 'weighted' version of the spectral excess theorem is given in order to make it applicable to nonregular graphs.

Two kinds of inner products

- Consider the vector space $\mathbb{R}_{d}[x]$ consisting of all real polynomials of degree at most d with the inner product

$$
\langle p, q\rangle_{G}:=\operatorname{tr}(p(A) q(A)) / n=\sum_{u, v}(p(A) \circ q(A))_{u v} / n
$$

for $p, q \in \mathbb{R}_{d}[x]$, where \circ is the entrywise product of matrices.

- For any two $n \times n$ symmetric matrices M, N over \mathbb{R}, define the inner product

$$
\langle M, N\rangle:=\frac{1}{n} \sum_{i, j}(M \circ N)_{i j},
$$

where " \circ " is the entrywise product of matrices.

- Thus $\langle p, q\rangle_{G}=\langle p(A), q(A)\rangle$ for $p, q \in \mathbb{R}_{d}[x]$.

Predistance polynomials

By the Gram-Schmidt procedure, there exist polynomials $p_{0}, p_{1}, \ldots, p_{d}$ in $\mathbb{R}_{d}[x]$ satisfying

$$
\operatorname{deg} p_{i}=i \quad \text { and } \quad\left\langle p_{i}, p_{j}\right\rangle_{G}=\delta_{i j} p_{i}\left(\lambda_{0}\right)
$$

for $0 \leq i, j \leq d$, where $\delta_{i j}=1$ if $i=j$, and 0 otherwise.
These polynomials are called the predistance polynomials of G.

Lemma (Fiol and Garriga, 1997)

The spectral excess $p_{d}\left(\lambda_{0}\right)$ can be expressed in terms of the spectrum, which is

$$
p_{d}\left(\lambda_{0}\right)=\frac{n}{\pi_{0}^{2}}\left(\sum_{i=0}^{d} \frac{1}{m_{i} \pi_{i}^{2}}\right)^{-1}
$$

where $\pi_{i}=\prod_{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|$ for $0 \leq i \leq d$.

Preparation for the 'weighted' version

- Let α be the eigenvector of A (usually called the Perron vector) corresponding to λ_{0} such that $\alpha^{t} \alpha=n$ and all entries of α are positive. Note that $\alpha=(1,1, \ldots, 1)^{t}$ iff G is regular.
- For a vertex u, let α_{u} be the entry corresponding to u in α.

The matrix \widetilde{A}_{i} with rows and columns indexed by the vertex set V such that

$$
\left(\widetilde{A}_{i}\right)_{u v}= \begin{cases}\alpha_{u} \alpha_{v} & \text { if } \partial(u, v)=i \\ 0 & \text { otherwise }\end{cases}
$$

is called the weighted distance- i matrix of G.

- If G is regular, then \widetilde{A}_{i} is binary and hence the distance- i matrix A_{i}. Thus, \widetilde{A}_{i} can be regarded as a 'weighted' version of A_{i}.

Spectral excess theorem and its 'weighted' version

Define $\widetilde{\delta}_{i}:=\left\langle\widetilde{A}_{i}, \widetilde{A}_{i}\right\rangle$. If G is regular, then

$$
\widetilde{\delta}_{d}=\left\langle\widetilde{A}_{d}, \widetilde{A}_{d}\right\rangle=\left\langle A_{d}, A_{d}\right\rangle=\frac{1}{n} \sum_{u \in V G}\left|G_{d}(u)\right|=\bar{k}_{d} .
$$

Hence, $\widetilde{\delta}_{d}$ can be viewed as a generalization of average excess \bar{k}_{d}.

Spectral excess theorem (Fiol and Garriga, 1997)

Let G be a regular graph with $d+1$ distinct eigenvalues. Then, $\bar{k}_{d} \leq p_{d}\left(\lambda_{0}\right)$, and equality is attained if and only if G is distance-regular.

Weighted spectral excess theorem (Lee and Weng, 2012)

Let G be a graph with $d+1$ distinct eigenvalues. Then, $\widetilde{\delta}_{d} \leq p_{d}\left(\lambda_{0}\right)$, and equality is attained if and only if G is distance-regular. \square

An application: graphs with odd-girth $2 d+1$

Odd-girth theorem (van Dam and Haemers, 2011)

A connected regular graph with $d+1$ distinct eigenvalues and odd-girth $2 d+1$ is distance-regular.

- In the same paper, they posed the question to determine whether the regularity assumption can be removed.
- Moreover, they showed that the answer is affirmative for the case $d+1=3$, and claimed to have proofs for the cases $d+1 \in\{4,5\}$.
- As an application of the 'weighted' spectral excess theorem, we show that the regularity assumption is indeed not necessary.

Odd-girth theorem (Lee and Weng, 2012)

A connected graph with $d+1$ distinct eigenvalues and odd-girth $2 d+1$ is distance-regular.

We then apply this line of study to the class of bipartite graphs.

- The distance-2 graph G^{2} of G is the graph whose vertex set is the same as of G, and two vertices are adjacent in G^{2} if they are of distance 2 in G.
- For a connected bipartite graph, the halved graphs are the two connected components of its distance-2 graph.
- For an integer $h \leq \underset{\sim}{d}$, we say that G is weighted h-punctually distance-regular if $\widetilde{A}_{h}=p_{h}(A)$.

Proposition (BCN, Proposition 4.2.2, p.141)

Suppose that G is a connected bipartite graph. If G is distance-regular, then its two halved graphs are distance-regular.

Problem (The converse statement)

Suppose that G is a connected bipartite graph, and both halved graphs are distance-regular.

- Can we say that G is distance-regular?
- If not, what additional conditions do we need?

Answer:

- Three examples will be given to show that the converse does not hold, that is, a connected bipartite graph whose halved graphs are distance-regular may not be distance-regular.
- We will give a quasi-spectral characterization of a connected bipartite weighted 2-punctually distance-regular graph whose halved graphs are distance-regular.
- In the case the spectral diameter is even we show that the graph characterized above is distance-regular.

Three counterexamples

Example 1 (weighted 2-punctually distance-regular \& odd spectral diameter)

The Möbius-Kantor graph, with spectrum $\left\{3^{1}, \sqrt{3}^{4}, 1^{3},(-1)^{3},(-\sqrt{3})^{4},(-3)^{1}\right\}$.

- $D=4<5=d$,
- $\widetilde{A}_{i}=p_{i}(A)$ for $i \in\{0,1,2,4\}$, and
- both halved graphs the complete multipartite graphs $K_{2,2,2,2}$ (with spectrum $\left\{6^{1}, 0^{4},(-2)^{3}\right\}$), which are distance-regular.

Example 2 (not weighted 2-punctually distance-regular \& even spectral diameter)

Consider the Hoffman graph with spectrum $\left\{4^{1}, 2^{4}, 0^{6},(-2)^{4},(-4)^{1}\right\}$, which is cospectral to the Hamming 4-cube but not distance-regular.

- $D=d=4$,
- $\widetilde{A}_{i}=p_{i}(A)$ for $i \in\{0,1,3\}(i \neq 2)$, and
- its two halved graphs are the complete graph K_{8} and the complete multipartite graph $K_{2,2,2,2}$, which are both distance-regular.

Example 3 (not weighted 2-punctually distance-regular \& odd spectral diameter)

Consider the graph obtained by deleting a 10 -cycle from the complete bipartite graph $K_{5,5}$, with spectrum $\left\{3^{1},((\sqrt{5}+1) / 2)^{2},((\sqrt{5}-1) / 2)^{2},((-\sqrt{5}+1) / 2)^{2},((-\sqrt{5}-1) / 2)^{2},(-3)^{1}\right\}$.

- $D=3<5=d$,
- $\widetilde{A}_{i}=p_{i}(A)$ for $i \in\{0,1\}(i \neq 2)$, and
- both halves graphs are the complete graphs K_{5}, which are distance-regular.

The remaining case

We have considered three counterexamples.
Example 1 (weighted 2-punctually distance-regular \& odd spectral diameter)
Example 2 (not weighted 2-punctually distance-regular \& even spectral diameter)
Example 3 (not weighted 2-punctually distance-regular \& odd spectral diameter)

Note that the remaining case is that
G is weighted 2-punctually distance-regular with even spectral diameter.

Question: How about the remaining case?
Answer: Under these additional conditions, the converse statement is true.

Theorem (Lee and Weng, 2014)

Suppose that G is a connected bipartite graph, and both halved graphs are distance-regular. If G is weighted 2-punctually distance-regular with even spectral diameter, then G is distance-regular.

Sketch of proof

- By the weighted 2-punctually distance-regularity assumption,
- G is regular, and
- both halved graphs have the same spectrum, and thus have the same (pre)distance-polynomials.
- By the above results and the even spectral diameter assumption,
- $\widetilde{\delta}_{d}=p_{d}\left(\lambda_{0}\right)$, and the result follows by (weighted) spectral excess theorem.

Thank you for your listening!

